

Agilent 3000 Series Oscilloscopes

User's and Service Guide

In This Book

This book gives you the information you need to begin using the 3000 Series Oscilloscopes. It contains the following chapters:

Getting Started Chapter 1 contains inspection, power requirements, probe compensation instructions, cleaning instructions, and setup information.

Using the Oscilloscope Chapter 2 gives information on how to use the front panel and the graphical user interface, and tells you how to perform various operations with the oscilloscope.

Specifications and Characteristics Chapter 3 gives specification and characteristics of the oscilloscope.

Service Chapter 4 gives service and performance testing information for the oscilloscope.

Contents

1 Getting Started

Inspecting the Package Contents 8
Performing a Functional Check 11
Compensating Probes 13
Front Panel and User Interface Descriptions 15
Automatically Displaying a Waveform 18
Cleaning the Oscilloscope 19

2 Using the Oscilloscope

Vertical Controls 23

Vertical System Setup 24
Channel Coupling Control 26
Bandwidth Limit Control 29
Probe Attenuation Control 31
Digital Filter Controls 32
Volts/Div Control 33
Invert Control 34
Math Functions Control 36
Ref Control 39
Remove Waveforms from the Display 41
Vertical Position and Scale Controls 42

Horizontal Controls 43

Horizontal System Setup 44 Horizontal Knobs 45 Horizontal Menu 46

Trigger Controls 50

Trigger System Setup 51 Trigger Types 53

Waveform Controls 57

Roll Mode 58
Stop Acquisition 59
Equivalent Time Sampling 59
Average Acquisition 59
Analog Acquisition 61
Peak Detect 61
Anti-Aliasing 62

Contents

Display System 63

Storing and Recalling Waveforms or Setups 65

Waveforms 66 Setups 66 Factory 66 Load 66 Save 66

Saving To and Loading From USB Mass Storage Devices 67

Saving on USB Mass Storage Device 68 Loading Setup/Waveform from USB Mass Storage Device 69

Printing to a USB Printer 71

Printing the Display to a USB Printer 72 Supported Printers 73

Utility Menu 74

I/O SETTING Menu 75 Self-Cal Key 76 Waveform Recorder 78 Self-Test 80 Language 81

Automatic Measurements 82

Voltage Measurements 83 Time Measurements 84 Automatic Measurement Procedure 85 Measurement Concepts 86

Cursor Measurements 91

Manual 92 Track 94 Auto Measure 95

Auto-Scale and Run/Stop Buttons 96

Auto-Scale Button 97 Run/Stop Button 99

3 Specifications and Characteristics

Specifications 102 Characteristics 103

4 Service

Returning the oscilloscope to Agilent Technologies for service 108

Testing Performance 109

Before Performing Performance Verification Testing 111

Vertical Performance Verification 112

DC Gain Accuracy Test 113 Analog Bandwidth - Maximum Frequency Check 118

Performance Test Record 125

Getting Started

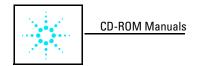
Inspecting the Package Contents

☐ Inspect the shipping container for damage.

Keep a damaged shipping container or cushioning material until you have inspected the contents of the shipment for completeness and have checked the oscilloscope mechanically and electrically.

- ☐ Verify that you received the following items in the oscilloscope packaging.
 - Oscilloscope
 - (2) N2862A 10:1 10 M Ω passive probes (60 MHz and 100 MHz models)
 - (2) N2863A 10:1 10 M Ω passive probes (150 MHz and 200 MHz models)
 - CD-ROM containing user documentation

See Figure 1-1. (See table 1-1 for the power cord.) If anything is missing, contact your nearest Agilent Technologies Sales Office. If the shipment was damaged, contact the carrier, then contact the nearest Agilent Technologies Sales Office.


\square Inspect the oscilloscope.

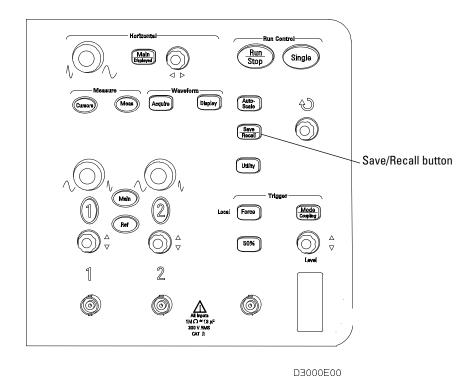
- If there is mechanical damage or a defect, or if the oscilloscope does not operate properly or does not pass performance tests, notify your Agilent Technologies Sales Office.
- If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier and your Agilent Technologies Sales Office. Keep the shipping materials for the carrier's inspection. The Agilent Technologies Sales Office will arrange for repair or replacement at Agilent's option without waiting for claim settlement.

Figure 1-1

Package Contents

Table 1-1

Power Cords						
	Plug Type	Cable Part No.	Plug Description	Length (in/cm)	Color	Country
250V		8120-1351 8120-1703	Straight *BS1363A 90°	90/228 90/228	Gray Mint Gray	United Kingdom, Cyprus, Nigeria,
					,	Zimbabwe, Singapore
250V		8120-1369	Straight *NZSS198/ASC	79/200	Gray	Australia, New Zealand
		8120-0696	90°	87/221	Mint Gray	
250V		8120-1689	Straight *CEE7-Y11	79/200	Mint Gray	East and West Europe, Saudi Arabia, So. Africa, India
		8120-1692	90°	79/200	Mint Gray	
	4 ×	8120-2857	Straight (Shielded)	79/200	Coco Brown	(unpolarized in many nations)
125V		8120-1378	Straight *NEMA5-15P	90/228	Jade Gray	United States, Canada, Mexico,
		8120-1521	90°	90/228	Jade Gray	
	40 .	8120-1992	Straight (Medical) UL544	96/244	Black	Philippines, Taiwan
250V		8120-2104	Straight *SEV1011	79/200	Mint Gray	Switzerland
		8120-2296	1959-24507	79/200	Mint Gray	
	•		Type 12 90°			
220V		8120-2956	Straight *DHCK107	79/200	Mint Gray	Denmark
		8120-2957	90°	79/200	Mint Gray	
250V	⊘ a	8120-4211	Straight SABS164	79/200	Jade Gray	Republic of South
		8120-4600	90°	79/200		Africa
						India
100V		8120-4753	Straight MITI	90/230	Dark Gray	Japan
		8120-4754	90°	90/230		


^{*} Part number shown for plug is the industry identifier for the plug only. Number shown for cable is the Agilent part number for the complete cable including the plug.

Performing a Functional Check

Perform this quick functional check to verify that your oscilloscope is operating correctly.

1 Turn on the oscilloscope. Use only power cords designed for your oscilloscope. Use a power source that delivers 100 to 240 VAC, 47 Hz to 440 Hz. Turn on the oscilloscopes, wait until the display shows that all self-tests passed. Push the Save/Recall button, select Setups in the top menu box and push the Factory menu box.

Figure 1-2

Storage and Power Switch

WARNING

To avoid electric shock, be sure the oscilloscope is properly grounded.

2 Input a waveform to a channel of the oscilloscope.

CAUTION

To avoid damage to the oscilloscope, make sure that the input voltage at the BNC connector does not exceed the maximum voltage (300 Vrms maximum).

Compensating Probes

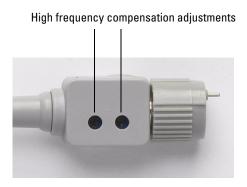
Perform this adjustment to match your probe to the input channel. This should be done whenever you attach a probe for the first time to any input channel.

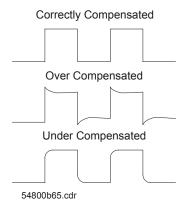
Low Frequency Compensation

- 1 Set the Probe menu attenuation to 10X. If you use the probe hooktip, ensure a proper connection by firmly inserting the tip onto the probe.
- **2** Attach the probe tip to the probe compensation connector and the ground lead to the probe compensator ground connector
- **3** Press the **Auto-Scale** front panel button.

Figure 1-3

Probe Compensation

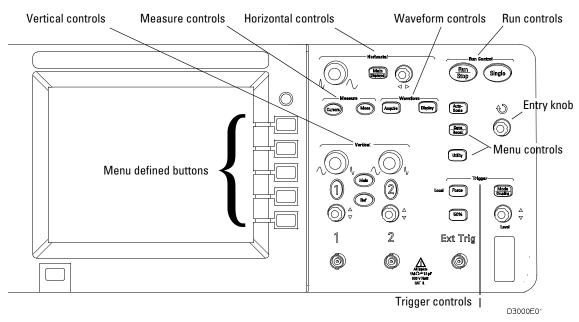

4 If waveform does not appear like the Correctly Compensated waveform shown in Figure 1-3, then use a nonmetallic tool to adjust the low frequency compensation adjustment on the probe for the flattest square wave possible.


High Frequency Compensation

- 1 Using the BNC adapter, connect the probe to a square wave generator.
- 2 Set the square wave generator to a frequency of 1 MHz, an amplitude of 3 Vp-p, and an output termination of 50 Ω .

3 Press the **Auto-Scale** front panel button.

Figure 1-4


Probe Compensation

4 If waveform does not appear like the Correctly Compensated waveform shown in Figure 1-4, then use a nonmetallic tool to adjust the 2 high frequency compensation adjustments on the probe for the flattest square wave possible.

Front Panel and User Interface Descriptions

One of the first things you will want to do with your new oscilloscope is to become acquainted with its front panel. Therefore, we have written the exercises in this chapter to familiarize you with some of its controls. The front panel has knobs and buttons. The knobs are used most often and are similar to the knobs on other oscilloscopes.

Figure 1-5

Front Panel

The definitions of the buttons and the knobs are as follows:

Measure controls Meas and Cursors

Waveform controls

controls Acquire and Display
Menu controls Save/Recall and Utility

Vertical

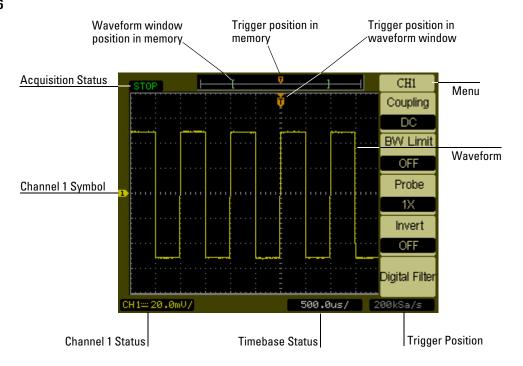
controls Vertical position knobs, vertical scale knobs 1, 2, Math and Ref menus.

Horizontal controls

Position knob, Main/Delayed, and scale knob

Trigger

controls Trigger level knob, **50%**, **Mode/Coupling**, and **Force**


Run controls Run/Stop, Auto-Scale, and Single

Menu defined buttons

Five gray buttons from top to bottom on the right-hand side of the screen, which select the adjacent menu items in the currently displayed menu.

Entry knob For the adjustment defined controls.

Figure 1-6

User Interface

Automatically Displaying a Waveform

The oscilloscope has an Auto-scale feature that automatically sets up the oscilloscope to best display the input waveform. Using Auto-scale requires waveforms with a frequency greater than or equal to $50~\rm{Hz}$ and a duty cycle greater than 1%.

When you press the **Auto-Scale** button, the oscilloscope turns on and scales all channels that have waveforms applied, and selects a time base range based on the trigger source. The trigger source selected is the lowest numbered channel that has a waveform applied. The 3000 Series Oscilloscopes are two channel oscilloscopes with an external trigger input.

Cleaning the Oscilloscope

• Clean the oscilloscope with a soft cloth dampened with a mild soap and water solution.

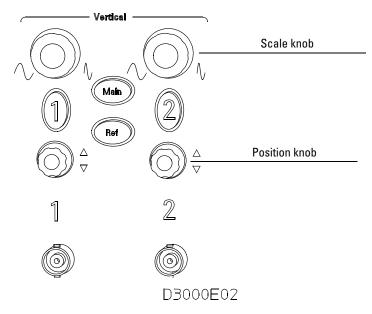
CAUTION

Do not use too much liquid in cleaning the oscilloscope. Water can enter the oscilloscope's front panel, damaging sensitive electronic components.

Using the Oscilloscope

Using the Oscilloscope

This chapter describes all of the oscilloscope's buttons, knobs, and menus. It is recommended that you perform all of the exercises in this chapter to become familiar with the powerful measurement capabilities of the oscilloscope.


Vertical Controls

Each channel has a vertical controls menu that appears after pressing either the ${\bf 1}$ or the ${\bf 2}$ front panel button. This section of the manual describes the vertical channel controls.

Vertical System Setup

Figure 2-1 shows the vertical system controls.

Figure 2-1

Vertical Controls

The following exercise guides you through the vertical buttons, knobs, and status bar.

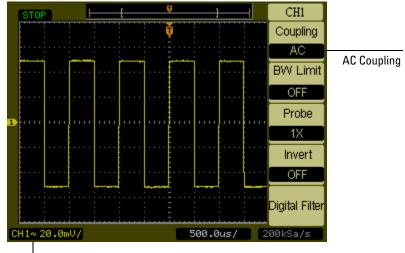
1 Center the waveform on the display using the position knob.

The position knob moves the waveform vertically. Notice that as you turn the position knob, a voltage value is displayed for a short time indicating how far the ground reference is from the center of the screen. Also notice that the ground symbol on the left side of the display moves in conjunction with the position knob.

Measurement hints

If the channel is DC coupled, you can quickly measure the DC component of the waveform by simply noting its distance from the ground symbol. If the channel is AC coupled, the DC component of the waveform is blocked, allowing you to use greater sensitivity to display the AC component of the waveform.

- $\boldsymbol{2}$. Notice that changing the vertical setup also affects the status bar.
 - You can quickly determine the vertical setup from the status bar in the display.
 - **a** Change the vertical sensitivity with the scale knob and notice that it causes the status bar to change.
 - **b** Press the **1** button. The CH1 menu appears and the channel is turned on.
 - c Toggle each of the menu buttons and notice which button causes the status bar to change. Channels 1 and 2 have a vernier button that allows the scale knob to change the vertical step size in smaller increments. Pressing Volts/Div menu button, changes vernier into Fine or Coarse status.
 - **d** Pressing the **1** button to turns channel off or on.

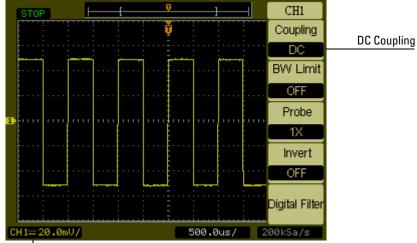

You can set the Coarse/Fine vernier control not only in the channel menu but also by pressing the vertical scale knob.

Channel Coupling Control

The channel coupling control can be used to remove any dc offset voltage on a waveform. By setting the coupling control to \mathbf{AC} the dc offset voltage is removed from the input waveform.

To remove any dc offset voltage from a waveform on channel 1, press the 1 front panel key. Press the Coupling menu key until **AC** appears. See Figure 2-2.

Figure 2-2

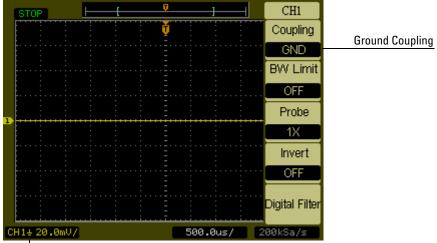


AC Coupling Status

AC Coupling Control

When DC coupling is selected, both AC and DC components of the input waveform are passed to the oscilloscope. See Figure 2-3.

Figure 2-3


DC Coupling Status

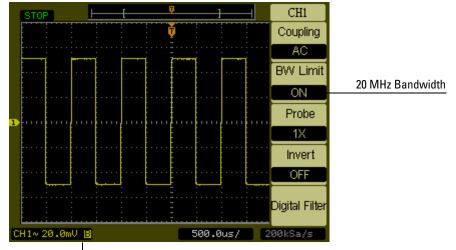
DC Coupling Control

Channel Coupling Control

When **GND** coupling is selected, the waveform is disconnected from the oscilloscope input. See Figure 2-4.

Figure 2-4

Ground Coupling Status

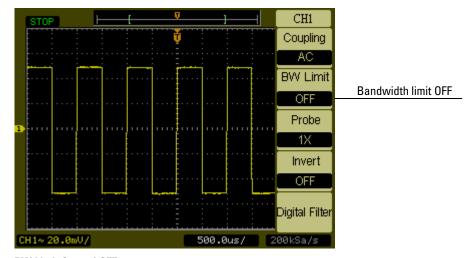

GND Coupling Control

Bandwidth Limit Control

The bandwidth limit control can be used to remove high frequency components on a waveform that are not important to the analysis of the waveform.

To remove high frequency components from a waveform on channel 1, press the **1** front panel key. Press the **BW Limit** menu key until ON appears. Frequencies above 20 MHz will be rejected. See Figure 2-5.

Figure 2-5


Bandwidth ON Status

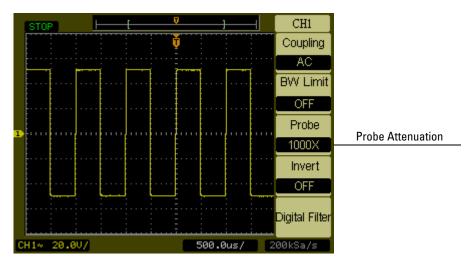
BW Limit Control ON.

When the **BW Limit** control is set to OFF, the oscilloscope is set to full bandwidth.

See Figure 2-6.

Figure 2-6

BW Limit Control OFF


Probe Attenuation Control

The probe attenuation control changes the attenuation factor for the probe. The attenuation factor changes the vertical scaling of the oscilloscope so that the measurement results reflect the actual voltage levels at the probe tip.

To change the probe attenuation factor for channel 1, press the $\bf 1$ front panel key. Press the **Probe** menu key to change the attenuation factor to match the probe being used.

Figure 2-7 shows an example for using a 1000:1 probe.

Figure 2-7

Probe Attenuation Set to 1000:1

Table 2-1 Probe attenuation factors and corresponding settings

1:1	1X
10:1	10X
100:1	100X
1000:1	1000X

Digital Filter Controls

Pressing the **Digital Filter** menu key displays the **Digital Filter** Controls. The digital filter controls set the digital filter used to filter the sampled waveform data. The types of filters that are available are shown in Table 2-2.

Table 2-2 Digital Filter Menus

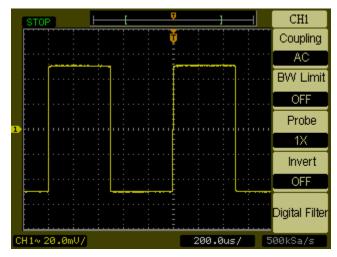
Menu	Setting	Description
Filter Type	3	LPF (Low Pass Filter) HPF (High Pass Filter) BPF (Band Pass Filter) BRF(Band Reject Filter)
Upper limit	Ð	The front panel entry knob sets the high limit.
Lower limit	Ð	The front panel entry knob sets the low limit.

Pressing the **Upper Limit** or the **Lower Limit** menu keys turns the front panel entry knob into a control that can set the high and low frequency limits of the digital filter. The horizontal scale control sets the maximum value for the upper and lower limits.

Volts/Div Control

The **Volts/Div** control sets the sensitivity of the **Volts/Div** knob. The knob has a **Coarse** or **Fine** setting. In the **Coarse** setting, the knob changes the **Volts/Div** scale in a 1-2-5-step sequence from 2mV/div, 5mV/div, 10mV, ..., to 5V/div. In the **Fine** setting, the knob changes the **Volts/Div** scale in small steps between the coarse settings. It will be helpful when you need to adjust the waveform's vertical size in finer steps.

Changing the **Coarse/Fine** configuration can also be changed by depressing the vertical scale knob on the front panel.


Invert Control

The invert control inverts the displayed waveform with respect to the ground level. When the oscilloscope is triggered on the inverted waveform, the trigger is also inverted.

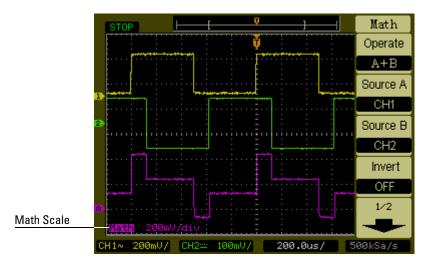
To invert the waveform on channel 1, press the 1 front panel key. Press the 1/2 menu key and then press the Invert menu key until ON appears.

Figure 2-8 and Figure 2-9 show the changes before and after inversion.

Figure 2-8

The waveform before inversion.

Figure 2-9


The waveform after inversion.

Math Functions Control

The math functions control allows the selection of the math functions add, subtract, multiply, divide, and FFT (Fast Fourier Transform) for **CH1** and **CH2**. The mathematical result can also be measured using the grid and cursor controls.

To select a math function, press the **Math** button to display the **Math** menu, the settings of this menu are shown in the Table 2-3. The amplitude of the math waveform can be adjust using the vertical scale knob. The adjustment range is in a 1-2-5 step from 0.1% to 1000%. The scale setting is displayed on the status bar.

Figure 2-10

Math Scale Setting Value

Table 2-3

Menu	Settings	Description
Operation	A+B A-B A ³ B AxB FFT	Add source A to source B Subtract source B from source A Multiply source B by source A Divide source A by source B Fast Fourier Transform
Source A	CH1 CH2	Set CH1 or CH2 as source A
Source B	CH1 CH2	Set CH1 or CH2 as source B
Invert	ON OFF	Inverted display of the Math waveform. Non-inverted display of the Math waveform.

Using the FFT

The FFT math function mathematically converts a time-domain waveform into its frequency components. FFT waveforms are useful for finding the harmonic content and distortion in systems, for characterizing noise in DC power supplies, and for analyzing vibration.

The FFT of a waveform that has a DC component or offset can cause incorrect FFT waveform magnitude values. To minimize the DC component, choose AC Coupling on the source waveform.

To reduce random noise and aliasing components in repetitive or single-shot waveforms, set the oscilloscope acquisition mode to averaging.

To display FFT waveforms with a large dynamic range, use the dBVrms scale. The dBVrms scale displays component magnitudes using a log scale.

Selecting an FFT Window

There are 4 FFT windows. Each window has trade-offs between frequency resolution and amplitude accuracy. What you want to measure and your source waveform characteristics help determine which window to use. Use the following guidelines to select the best window.

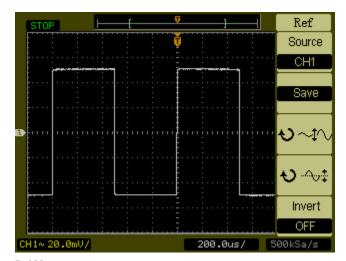
Table 2-4

Window	Characteristics	Best for measuring
Rectangle	Best frequency resolution, worst magnitude resolution. This is essentially the same as no window.	Transients or bursts, the waveform levels before and after the event are nearly equal. Equal-amplitude sine waves with fixed frequencies. Broadband random noise with a relatively slow varying spectrum.
Hanning Hamming	Better frequency, poorer magnitude accuracy than Rectangular. Hamming has slightly better frequency resolution than Hanning.	Sine, periodic, and narrow-band random noise. Transients or bursts where the waveform levels before and after the events are significantly different.
Blackman	Best magnitude, worst frequency resolution.	Single frequency waveforms, to find higher order harmonics.

Key points

The FFT resolution is the quotient of the sampling rate and the number of FFT points. With a fixed number of FFT points, the lower the sampling rate the better the resolution.

The Nyquist frequency is the highest frequency that any real-time digitizing oscilloscope can acquire without aliasing. This frequency is half that of the sample rate. This frequency is called the Nyquist frequency. Frequencies above the Nyquist frequency will be under sampled, which causes aliasing.


Ref Control

The ref control saves waveforms to a nonvolatile waveform memory. The reference function becomes available after the waveform has been saved. To display the reference waveform menu, press the **Ref** button.

Table 2-5

Menu	Settings	Comments
Source	CH1 CH2	Select channel for Ref
Save		Save selected source waveform into nonvolatile waveform memory.
Invert	ON OFF	Inverted display of the waveform. Non-inverted display of the waveform.

Figure 2-11

Ref Menu

Displaying a Reference Waveform.

- 1 Push the **Ref** button to show the reference waveform menu.
- 2 Set the Source to CH1 or CH2 to display the channel you want.
- **3** Change the vertical position and vertical scale controls to change positions and size of the displayed waveform.
- **4** Press **Save** to save the currently displayed waveform into the reference memory.

The reference function is not available in X-Y mode.

You cannot adjust the horizontal position and scale of the reference waveform.

Remove Waveforms from the Display

The CH1 and CH2 are channels used to input waveforms. The operations for Math and Ref are also regarded as independent channels. Pressing the Math and the Ref buttons toggles them off and on.

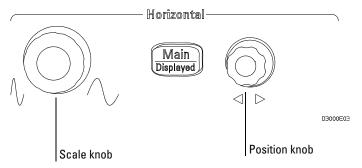
Vertical Position and Scale Controls

You can use the vertical controls to adjust the vertical scale and position waveforms on channel and channel 2.

The vertical position of waveforms (including **Math** and **Ref**) can be changed by moving them up or down on the display. You can compare waveforms by aligning a waveform above another or by aligning waveforms on top of each other.

The vertical scale of a waveform (including **Math** and **Ref**) can be changed. The waveform display will contract or expand about the ground level. If the **Volts/Div** is set to **Coarse**, the waveform scales in a 1-2-5 step sequence from 2 mV to 5 V. If the **Volts/Div** is set to **Fine**, it scales in small steps between the coarse scale settings. When scaling **Math** waveform, amplitude can be changed with the scale knob in a 1-2-5 step from 0.1% to 1000%. The **Fine** vertical control can be achieved by pressing the vertical scale knob.

When you change the vertical position, the position message is displayed in the lower left-hand corner of the screen.


Horizontal Controls

The oscilloscope shows the time per division in the scale readout. Since all waveforms use the same time base, the oscilloscope only displays one value for all channels, except when you use Delayed Sweep. The horizontal controls can change the horizontal scale and position of waveforms. The horizontal center of the screen is the time reference for waveforms. Changing the horizontal scale causes the waveform to expand or contract around the screen center. The horizontal position knob changes the position of the trigger point relative to the center of the screen.

Horizontal System Setup

Figure 2-12 shows the front panel horizontal system controls.

Figure 2-12

Horizontal Controls

The following exercise guides you through these buttons, knobs, and status bar.

- 1 Turn the scale knob and notice the change it makes to the status bar. The scale knob changes the sweep speed in a 1-2-5 step sequence and the value is displayed in the status bar.
- 2 Turn the position knob to move the trigger point with respect to the center of the screen
- 3 Press the Main/Delayed key to display the TIME menu.

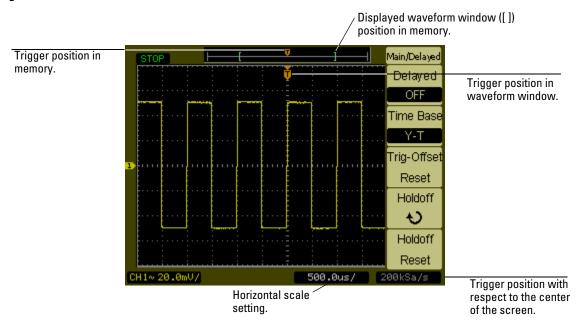
In this menu, you can enter or exit the Delayed Sweep mode, set the display to Y-T or X-Y format, and set the horizontal position knob to the **Trig-Offset** or **Holdoff** mode.

Horizontal Position Control

In the **Trig-Offset** setting, the trigger position will be changed horizontally when you turn the horizontal position knob.

In the **Holdoff** setting the horizontal position knob changes the Holdoff time.

Pressing the horizontal scale knob is another way to enter or exit the delayed sweep mode.

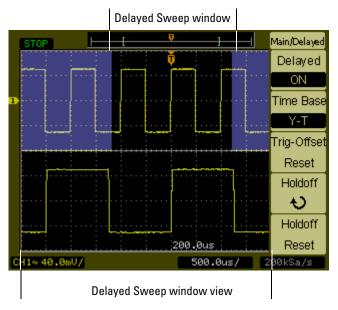

Horizontal Knobs

The position knob adjusts the horizontal position of all channels, math functions, and reference waveforms. The resolution of this control varies with the time base. The oscilloscope digitizes waveforms by acquiring the value of an input waveform at discrete points. The time base allows you to control how often the values are digitized. The scale control changes the horizontal time/div the Main and Delayed Seep time base. When Delayed Sweep is enabled, the horizontal scale control changes the width of the Delayed Sweep window.

Horizontal Menu

Pressing the Main/Delayed button displays the TIME menu. Figure 2-13 shows the screen icon descriptions and control indicators.

Figure 2-13


Status bar, trigger position, and horizontal scale controls indicators

Delayed Sweep

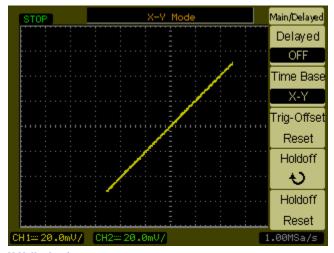
The Delayed Sweep is used to magnify a portion of the main waveform window. You can use Delayed Sweep to locate and horizontally expand part of the main waveform window for a more detailed (higher horizontal resolution) analysis of the waveform.

The Delayed Sweep time base setting cannot be set slower than the Main time base setting.

Figure 2-14

Delayed Sweep Window

The screen is divided into two parts. The top half of the display shows the main waveform window. The bottom half of the displays shows an expanded expanded view of the main waveform window. This expanded portion of the main window is called the Delayed Sweep window. Two blocks shadow the top half, the unshadowed portion is expanded in the lower half. The horizontal position and scale knobs control the size and position of the Delayed Sweep window.


The horizontal position knob is used to change the position of the Delayed Sweep Window. The horizontal scale knob is used to adjust the Delayed Sweep window size. To change the Main time base, you must turn off the Delayed Sweep mode. Since both the Main and Delayed Sweep windows are displayed, there are half as many vertical divisions so the vertical scaling is doubled. Notice the changes in the status bar.

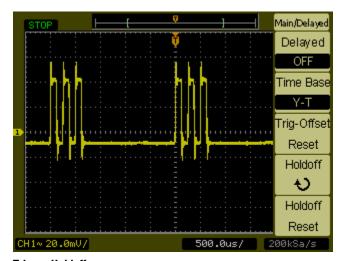
The Delayed Sweep function can also be activated by pressing the horizontal scale knob.

X-Y Format

This format compares the voltage level of two waveforms point by point. It is useful for studying phase relationships between two waveforms. This format only applies to channels 1 and 2. Choosing the X-Y display format displays channel 1 on the horizontal axis and channel 2 on the vertical axis. The oscilloscope uses the untriggered sample acquisition mode and waveform data is displayed as dots. The sampling rate can vary from 4 kSa/s to 100 MSa/s, and the default sampling rate is 1 MSa/s.

Figure 2-15

X-Y display format


The following modes or functions will not work in X-Y format.

- The Automatic Measurements
- The Cursor Measurements
- Pass/Fail test
- **Ref** and **Math** Operations
- The Delayed Sweep
- The Vector Display Mode
- Horizontal position knob
- Trigger Controls

Trigger Holdoff

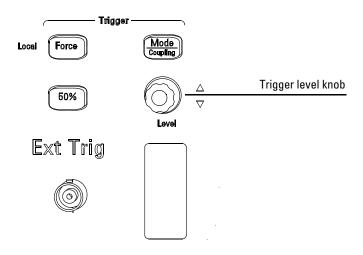
Trigger holdoff can be used to stabilize a waveform. The holdoff time is the oscilloscope's waiting period before starting a new trigger. During the holdoff time oscilloscope will not trigger until the holdoff has expired.

Figure 2-16

Trigger Holdoff

The following exercise guides you through setting the holdoff time.

- 1 Press the Main/Delayed, front panel button to display TIME menu
- **2** Select the **Holdoff** menu button.
- **3** Adjust the horizontal position knob to change the Holdoff time until the waveform is stable.
- 4 Press the **Holdoff Reset** menu button to change the Holdoff time to the 100 ns minimum value.


Trigger Controls

The trigger determines when the oscilloscope starts to acquire data and display a waveform. When a trigger is set up properly, it can convert unstable displays or blank screens into meaningful waveforms. When the oscilloscope starts to acquire a waveform, it collects enough data so that it can draw the waveform to the left of the trigger point. The oscilloscope continues to acquire data while waiting for the trigger condition to occur. After it detects a trigger, the oscilloscope continues to acquire enough data so that it can draw the waveform to the right of the trigger point.

Trigger System Setup

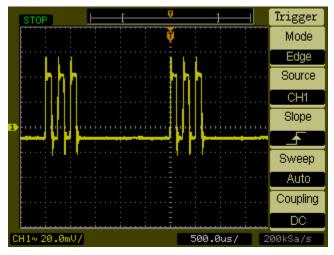
Figure 2-17 shows the front panel trigger system controls.

Figure 2-17

D3000E04

Trigger Controls

The following exercise guides you through these trigger buttons, knobs, and status bar.


1 Turn the trigger **Level** knob and notice the changes it makes to the display.

As you turn the **Level** knob two things happen on the display. First, the trigger level value is displayed at the lower left-hand corner of the screen. If the trigger is DC coupled, it is displayed as a voltage. If the trigger is AC coupled or LF reject coupled, it is displayed as a percentage of the trigger range. Second, a line is displayed showing the location of the trigger level with respect to the waveform except for AC coupling or LF reject coupling modes.

2 Change the trigger setup and notice how these changes affect the status bar.

a Press the **Mode/Coupling** button in the trigger controls area. The TRIGGER menu appears. Figure 2-18 displays this trigger menu.

Figure 2-18

Trigger Menu

- **b** Press the top trigger Mode menu button and notice the differences between Edge trigger, Video trigger, and Pulse trigger. Leave in the Edge mode.
- **c** Press the trigger Slope menu button to notice the differences between Rising Edge and Falling Edge.
- d Press the trigger Source menu button to select trigger source choices.
- ${\bf e}\ \ {\rm Press}$ the bottom trigger Mode menu button to select Auto or Normal.
- **f** Press the Coupling menu button and notice how AC, DC, and LF Reject affect the waveform display.
- **3** Press the **50%** key and watch it set the trigger level to center of the waveform.
- 4 Press the **Force** button to start an acquisition even if a valid trigger has not been found. This button has no effect if the acquisition is already stopped.

Trigger Types

The oscilloscope provides three trigger types: Edge, Video, and Pulse. Edge trigger can be used with analog and digital circuits. An edge trigger occurs when the trigger input passes through a specified voltage level with the specified slope. Video is used to trigger on fields or lines for standard video waveforms. Pulse trigger is used to find pulses with certain pulse widths.

Edge Trigger

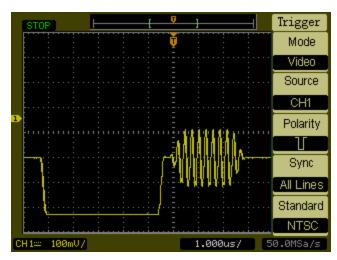
The **Slope** and **Level** controls help to define the Edge trigger. The **Slope** control determines whether the oscilloscope finds the trigger point on the rising or the falling edge of a waveform. The **Level** control determines voltage point on the waveform where the trigger occurs.

Table 2-6 Edge Trigger Menu Buttons

Menu	Settings	Comments
Source	CH1 CH2 EXT EXT/5 AC Line EXT(50 Ω)	Sets CH1 as the trigger waveform Sets CH2 as the trigger waveform Sets EXT TRIG as the trigger waveform Sets EXT TRIG/5 as the trigger waveform Sets the power line as the trigger waveform Sets EXT TRIG(50 Ω) as the trigger waveform
Slope	Rising Falling	Trigger on rising edge Trigger on falling edge
Mode	Auto Normal Single	Acquire waveform even when no trigger occurs Acquire waveform when trigger occurs. Acquire one waveform when trigger occurs then stop
Coupling	AC DC LF Reject HF Reject	Sets the input coupling to AC use for waveforms greater than 50 Hz Sets the input coupling to DC Sets the input coupling to low frequency reject (100 kHz cutoff) Sets the input coupling to high frequency reject (10 kHz cutoff)

Video Trigger

Video triggering is used to trigger on fields or lines of NTSC, PAL, or SECAM standard video waveforms. When Video is selected, the trigger coupling is set to \mathbf{AC} .


Table 2-7

Video Trigger Menu Buttons

Menu	Settings	Comments
Source	CH1 CH2 EXT EXT/5 EXT(50 Ω)	Sets CH1 as the trigger waveform Sets CH2 as the trigger waveform Sets EXT TRIG as the trigger waveform Sets EXT TRIG/5 as the trigger waveform Sets EXT TRIG(50 Ω) as the trigger waveform
Polarity	Normal polarity	Trigger on the negative edge of the sync pulse
	Inverted polarity	Trigger on the positive edge of the sync pulse
Sync	All Lines Line Num Odd field Even field	Trigger on all lines Trigger on a selected line Trigger on an odd field Trigger on an even field
Standard	PAL/SECAM NTSC	Trigger on a PAL or SECAM video waveform Trigger on an NTSC video waveform

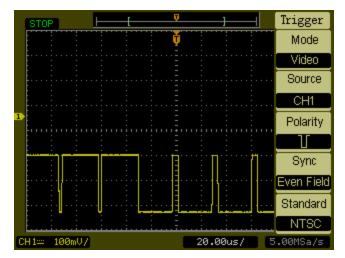

Normal Polarity Sync triggers always occur on negative-going horizontal sync pulses. If the video waveform has positive-going horizontal sync pulses, use the Inverted Polarity selection.

Figure 2-19

Line Synchronization

Figure 2-20

Field Synchronization

Pulse Width

A Pulse Width trigger occurs when a pulse is found in a waveform that matches the pulse definition. The **When** and **Setting** menu buttons control the pulse definition.

Table 2-8

Menu	Settings	Comments
Source	CH1 CH2 EXT EXT/5 EXT(50 Ω)	Sets channel 1 as the trigger waveform Sets channel 2 as the trigger waveform Sets EXT TRIG as the trigger waveform Sets EXT TRIG/5 as the trigger waveform Sets EXT TRIG(50 Ω) as the trigger waveform
When	.п.	8 20 1 100 0 1 100 00
	<u>→</u> ←_	Positive pulse width less than pulse width setting
	_F>+L	Positive pulse width larger than pulse width setting
	+=+	Positive pulse width equal to pulse width setting
	→ -	Negative pulse width less than pulse width setting
	<u> </u>	Negative pulse width larger than pulse width setting
	+= +	Negative pulse width equal to pulse width setting
Setting	Ð	Adjusts pulse width using the front panel entry knob.
	<width></width>	
Mode	Auto Normal	Acquire waveform even when no trigger occurs Acquire waveform when trigger occurs
Coupling	DC AC HF Reject LF Reject	Sets the input coupling to AC use for waveforms greater than 50 Hz Sets the input coupling to DC Sets the input coupling to low frequency reject (100 kHz cutoff) Sets the input coupling to high frequency reject (10 kHz cutoff)

Waveform Controls

Figure 2-21 shows the location of the **Acquire** button in the **Waveform** section of the front panel.

Figure 2-21

Waveform Controls

Pressing the **Acquire** button displays the **ACQUIRE** menu as follows:

Table 2-9

Menu	Settings	Comments
Acquisition	Normal Average Analog Peak Detect	Normal Acquisition mode Average Acquisition mode Analog Acquisition mode Peak Detect Acquisition mode
Sampling	Real Time Equ-Time	Real time sampling mode Equivalent time sampling mode
Averages	2 to 256	Step by multiple of two. Set average times from 2 to 256
Intensity	\ < i % >	Adjust the analog display intensity
Anti-Aliasing	ON OFF	Turn on Anti-Aliasing function Turn off Anti-Aliasing function

Select Real Time acquisition to observe single-shot or pulse waveforms.

Select Equ-Time to observe high frequency repetitive waveforms.

To reduce the displayed random noise, select the Average Acquisition. This mode decreases screen refresh rate.

To Avoid waveform aliasing, select Peak Detect Acquisition.

Roll Mode

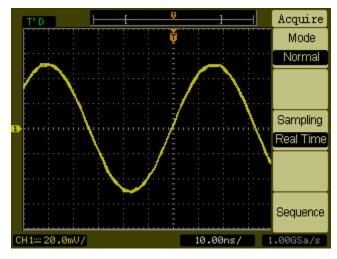
Roll mode continuously moves data across the display from left to right. It allows you to see dynamic changes (like adjusting a potentiometer) on low frequency waveforms. Two frequently used applications are transducer monitoring and power supply testing.

When in the Roll Mode, the oscilloscope is untriggered and runs continuously. You can also make automatic measurements in the roll mode. The acquisition system does not miss any data during the measurement. The slight shift in the display after the measurement is complete is that of the display catching up to the acquisition system.

The oscilloscope enters the Roll Mode when the Horizontal **Scale** control is set to 50 ms/div or slower and the trigger mode is set to Auto.

Stop Acquisition

When acquisition is stopped, the last acquired waveform is displayed. The waveform can be moved by using the vertical and horizontal controls. When the horizontal scale is set to 20 ns or faster, the oscilloscope uses $\sin(x)/x$ interpolation to expand the horizontal time base.


Equivalent Time Sampling

The equivalent time sampling mode can get up to 20 ps of horizontal resolution (equivalent to 50 GSa/s). This mode is good for observing repetitive waveforms and should not be used for single-shot events or pulse waveforms.

Average Acquisition

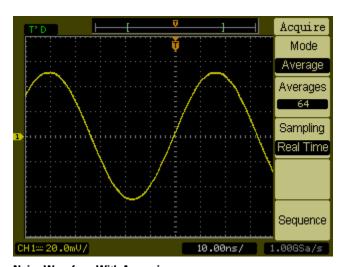
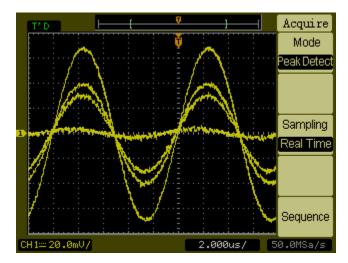

The Average Acquisition mode is should be used to remove random noise from the waveform and to improve measurement accuracy. The averaged waveform is a running average over a specified number of acquisitions from 2 to 256.

Figure 2-22

Noisy Waveform Without Averaging

Figure 2-23

Noisy Waveform With Averaging


Analog Acquisition

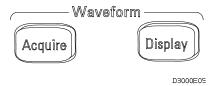
In the Analog Acquisition mode, the oscilloscope calculates a probability based on how often a displayed waveform point occurs over multiple acquisitions. The waveform points that occur the most often are displayed at the highest intensity level. The waveform points that occur the lest often are displayed at the lowest intensity level. The waveform points that occur between the highest and lowest probability are display at intensity levels in between the highest and lowest intensity levels.

Peak Detect

Peak Detect mode captures the maximum and minimum values of a waveform over multiple acquisitions.

Figure 2-24

Peak Detect Waveform


Anti-Aliasing

Aliasing is the condition that occurs when the oscilloscope tries to acquire a waveform whose frequency is greater than twice the sample rate of the oscilloscope. The Anti-Aliasing feature prevents this by detecting the maximum frequency in the waveform to avoid aliasing.

Display System

Figure 2-25 shows location of the Display button in the Waveform area of the front panel.

Figure 2-25

Display Menu

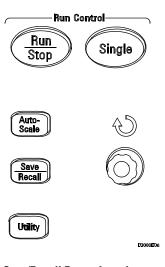
Pressing the **Display** button produces the **DISPLAY** menu as follows:

Table 2-10

Display Menu 1		
Menu	Setting	Comments
Туре	Vectors Dots	Display waveforms as vectors Display waveforms as dots
Grid		Display grids and coordinates on the screen
		Turn off the grids
		Turn off the grids and coordinates
X G		Press to increase display contrast
) 🗖		Press to decrease display contrast

When the display Type is set to **Vectors**, the oscilloscope connects the sample points by using digital interpolation. Digital interpolation maintains linearity by using a $\sin(x)/x$ digital filter. The digital interpolation is suitable for real time sampling and is most effective at 20 ns or faster horizontal scale settings.

Display System **Anti-Aliasing**


Table 2-11 Display Menu 2

Menu	Settings	Comments
Persist	Infinite	The sample points remain displayed until persistence is set to "OFF".
	OFF	Turn off the persistence function
Menu Display	1s, 2s, 5s, 10s, 20s, and Infinite	Sets the time before hiding menu.
Screen	Normal Invert	Sets to normal display mode Sets to inverted color display mode

Storing and Recalling Waveforms or Setups

Figure 2-26 shows the location of the **Save/Recall** button on the front panel.

Figure 2-26

Save/Recall Button Location

Pressing the **Save/Recall** button produces the **STORAGE** menu as follows:

Table 2-12

STORAGE Menu Buttons		
Menu	Settings	Comments
Save/Recal I	Waveforms Setups	Save or recall waveforms Save or recall an oscilloscope setup
Waveform	No.1 through No. 10	Sets the storage location of the waveform
Setup	No.1 through No. 10	Sets the storage location of the setup
Load		Recall waveforms, factory setup, of saved setup
Save		Save waveforms or setups

Waveforms

You can save 10 waveforms for the two channels in the nonvolatile memory of the oscilloscope and overwrite the previously saved contents as needed.

Setups

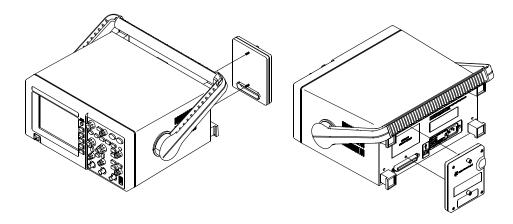
You can save 10 settings in the nonvolatile memory of the oscilloscope and overwrite previously saved setups. By default, the oscilloscope saves the current setup each time it is turned off. The oscilloscope automatically recalls this setup the next time it is turned on.

Factory

You can recall the factory default setup any time you want to return the oscilloscope to the state it was in when you received it.

Load

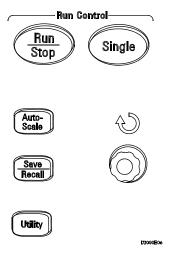
The saved waveforms, setups, and factory setup can be recalled by pressing the Load menu button.


Save

Either the waveforms or the current settings of the oscilloscope are saved to nonvolatile memory by pressing the **Save** menu button. Wait at least five seconds before turning off the oscilloscope.

Saving To and Loading From USB Mass Storage Devices

A USB mass storage device can be connected to the oscilloscope through a USB host port on the rear of the oscilloscope. Figure 2-27 shows the USB module at the rear panel of the oscilloscope.


Figure 2-27

USB Module at the Rear Panel

The USB device is used for saving and loading setups and waveforms. This can be done through the **Save/Recall** button and menu. Figure 2-28 shows the location of the/ **Save/Recall** button on the front panel.

Figure 2-28

Save/Recall Button Location

Saving on USB Mass Storage Device

You can save the oscilloscope's current setup, waveform trace and display on the USB mass storage device by following the steps below:

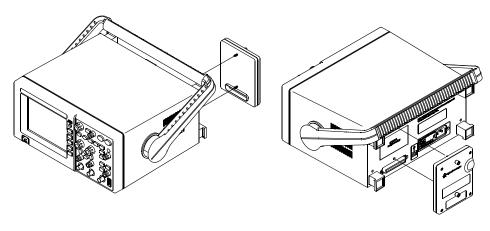
- 1. Connect the USB mass storage device to the USB host port on the rear of the oscilloscope.
 - Take note that the USB host ports are rectangular and USB device port is square.
- 2. To access the Save/Recall menu, press **Save/Recall**.
- 3. The **USB** option will be available under **Storage** softkey only if the USB mass storage device has been connected to the oscilloscope.
- 4. Select your preferred **File Type**. The available options are **Waveform**, **Setup**, **Bitmap** and **CSV**.
 - Waveform This option saves the visible portion of the acquisition (the displayed waveform) for later recall and comparison with other measurements.
 - **Setup** This option captures all settings including measurements, cursors, math functions, and horizontal, vertical, and trigger settings.

- **Bitmap** This option captures the image of the screen according to the selected bmp format. There are two Bitmap options:
 - **8 bit** The screen image is converted to a smaller, lower resolution bitmap file of the screen.
 - **24 bit** This is a larger, high-resolution bitmap file of the screen.
- CSV This creates a file of comma-separated variable values of displayed channels and math waveforms. This format is suitable for spreadsheet analysis.
- 5. Press the **Save** softkey. This option prompts a screen that shows the available directory and files on the USB mass storage device. It also shows a softkey keyboard at the bottom of the directory.
- 6. The knob symbol at **Location** softkey is highlighted. Now, determine the **Location** or directory you want to save the file by turning the Entry knob. Press **Enter** softkey at your preferred directory.
- 7. Now, the knob symbol at **File Name** softkey is highlighted. To name the file, turn the Entry knob and select the characters. Once you are at your prefered character, press **Enter** softkey.
- 8. Repeat this till you have named the file. Use **Delete Character** softkey to delete unwanted characters.
- 9. Press the **Save** softkey to save the file.

Loading Setup/Waveform from USB Mass Storage Device

You can load the setup and waveform trace from the USB mass storage device by using DSO3000 series oscilloscope.

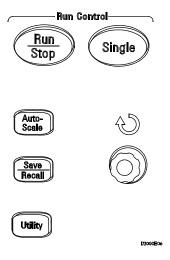
- 1. Connect the USB mass storage device to the USB host port on the rear of the oscilloscope.
- 2. To access the Save/Recall menu, press ${\bf Save/Recall}.$
- 3. The **USB** option will be available under **Storage** softkey, only if the USB mass storage device has been connected to the oscilloscope.


Saving To and Loading From USB Mass Storage Devices Loading Setup/Waveform from USB Mass Storage Device

- 4. Select the type of information to load from the **File Type** option, either **Waveform** or **Setup**.
 - **Waveform** This option saves the visible portion of the acquisition (the displayed waveform) for later recall and comparison with other measurements.
 - **Setup** This option captures all settings including measurements, cursors, math functions, and horizontal, vertical, and trigger settings.
- 5. Press the **Load** softkey. This option prompts a screen that shows the available directory and files on the USB mass storage device.
- 6. Turn the Entry knob to select the directory and the file to be loaded.
- 7. Press the **Load** softkey.

Printing to a USB Printer

A USB printer can be connected and used directly from an oscilloscope. A list of supported printers is given on page 73. The USB printer can be connected to the oscilloscope through a USB host port on the rear of the oscilloscope. Figure 2-29 shows the USB module at the rear panel of the oscilloscope.


Figure 2-29

USB Module at the Rear Panel

Figure 2-30 shows the location of the **Utility** button on the front panel.

Figure 2-30

Save/Recall Button Location

Printing the Display to a USB Printer

You need a USB cable to connect the printer to the oscilloscope.

- 1. Connect the printer to the USB host port on the rear of the oscilloscope.
 - Take note that the USB host ports are rectangular and USB device port is square.
- 2. To access the Print Setup menu, press **Utility**, then **1/2** softkey, followed by **Print Setup** softkey.
 - Note that the $\mbox{Print Setup}$ softkey is located at page 2 of the Utility main menu.
- 3. The **Print Setup** softkey will be enabled only if the USB printer has been connected to the oscilloscope.
- 4. The available options at Print Set menu are **Print**, **Inverted** and **Palette**.
- 5. Select your preferred **Inverted** option, either **ON** or **OFF**.
 - **ON** This option changes the black background of display image to white. This can be used to reduce the amount of black ink that takes to print the oscilloscope display images.

- **OFF** This option prints the display image as shown on the screen.
- 6. Select your preferred **Palette** option, either **Grayscale** or **Color**.
 - **Grayscale** When this option is selected, the traces are printed in shades of gray rather than in color.
 - **Color** When this option is selected, the traces are printed in color.
- 7. Press the **Print** softkey.

Supported Printers

HP DeskJet and LaserJet printers are supported. The following printers have been tested:

HP Deskjet 9868

HP Business Inkjet 1000

HP Photosmart 7458

HP LaserJet 1160

HP LaserJet 3015

HP LaserJet 3020

HP LaserJet 5550

HP LaserJet 1320

HP All in One 5510A

HP DeskJet 935A

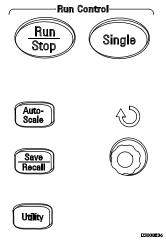
HP Photosmart 7760

HP All In One 7410

HP DeskJet 970CXI

HP DeskJet 895CXI

iii Dookoot oooo,


HP DeskJet 925C

HP DeskJet 1200C

Utility Menu

Figure 2-31 shows the location of the ${\bf UTILITY}$ button on the front panel.

Figure 2-31

Utility Button

Pressing the Utility button produces the UTILITY menu as follows:

Table 2-13

Utility Menu 1		
Menu	Setting	Comments
IO Setting		Produces the I/O SETUP menu
Sound	€ (0N)	Switches the beeper sound on or off
	√]× (0FF)	
Counter	OFF ON	Turns off the Frequency Counter Turns on the Frequency Counter
Language	Simplified Chinese Traditional Chinese English Korean Japanese	Select language (More languages may be added in later software versions)

Table 2-14	Utility Menu 2		
	Menu	Comments	
	Pass/Fail	Setup Pass/Fail test	
	Record	Setup Waveform Recorder	
	Self-Cal	Execute Self-calibration	
	Self-Test	Execute Self-test	

I/O SETTING Menu

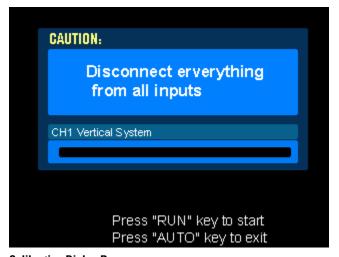
Requires the I/O module to be installed before the GPIB and RS-232 ports can be configured.

Before installing or uninstalling the I/O module, make sure that the oscilloscope powers is off. More details can be found in the Programmer's Guide on the CD-ROM.

Pressing the $\mbox{I/O}$ Setting menu key produces the following menu.

Table 2-15

I/O SETUP Menu


Menu	Settings	Comments
RS-232 Baud	300 2400 2800 9600 19200 38400	Sets the RS-232 baud rate
GPIB Address	0 through 30	Sets the GPIB address
᠅ᢡᢇ✓		USB connected

Self-Cal Key

Before performing the automatic calibration, allow the oscilloscope to warm-up at least 30 minutes.

Pressing the **Self-Cal** menu key starts the automatic calibration routine which adjusts the internal circuitry of the oscilloscope for the best measurement accuracy. The the automatic calibration should be run when the ambient temperature changes by 5 $^{\circ}$ C or more.

Figure 2-32

Calibration Dialog Box

Pass/Fail

The pass/fail function monitors waveform changes by comparing the waveform to a predefined mask.

Pressing the **Pass/Fail** key produces the following menu:

Table 2-16	PASS/FAIL Menu 1
Iabic 2-iv	FAJJ/I AIL MEHU I

Menu	Setting	Comments
Enable Test	On Off	Turn on Pass/Fail test Turn off Pass/Fail test
Source	CH1 CH2	Select pass/fail test on CH1 Select pass/fail test on CH2
Operation	(Run)	Pass/fail test stopped, press to run
	(Stop)	Pass/fail test running, press to stop
Msg Display	On Off	Turn on pass/fail information display Turn off pass/fail information display

Table 2-17 PASS/FAIL Menu 2

Menu	Settings	Comments
Output	Fail Fail + ◆ Pass Pass + ◆	Indicate when Fail condition detected Indicate and beep when Fail condition detected Indicate when Pass condition detected Indicate and beep when Pass condition detected
Stop on Output Load	On Off	Stop test when failure occurs Continue test when failure occurs Load a predefined test mask

Table 2-18 PASS/FAIL Menu 3

Menu	Settings	Comments
X Mask	< x div >	Set the mask's horizontal failure margin (0.04 div to 4.00 div)
Y Mask	\) < y div>	Set the mask's vertical failure margin (0.04 div to 4.00 div)
Create Mas Save	k	Create a test mask according to the above failure margins Save the created test mask

Pass/fail function is unavailable in X-Y mode .

Waveform Recorder

Waveform recorder can record input waveforms from channel 1 and channel 2, with a maximum acquisition depth of 1000 frames. This record behavior can also be activated by the pass/fail test, which makes this function especially useful for capturing abnormal waveforms over a long period of time.

Pressing the **Record** key produces the **RECORD** menu as follows:

Table 2-19

Waveform Record Menu

Menu	Settings	Comments
Mode	Record Play back Save/Recall Off	Select record mode Select play back mode Select storage mode Turn off all recorder functions
Source	CH1 CH2	Select record source channel
Interval	<1.00ms-1000s>	Set time interval between record frames
End Frames	(1-1000)	Set number of record frames
Operate	(Record)	Press to start recording
	(Stop)	Press to stop recording

Table 2-20

Playback Menu 1

Menu	Settings	Comments
Operation	(Play)	Press to start playback
	(Stop)	Press to stop playback
Msg Display	On Off	Turn on recorder information display Turn off recorder information display
Play mode	جت	Set continuous play mode
	▶ ─	Set one time play mode

Table 2-21	Playback Menu 2			
	Menu	Settings	Comments	
	Interval	<1.00 ms to 20s>	Set time interval between frames using the front panel entry knob.	
	Start frame	Ð	Set start frame using the front panel entry knob.	
		<1 to 1000>		
	Current frame	<1 to 1000>	Select current frame to be played using the front panel entry knob.	
	End frame	Ð	Set End frame using the front panel entry knob.	
		<1 to 1000>		

Table 2-22

Menu	Settings	Comments
Start frame	<1 to 220>	Set first frame to be saved using the front panel entry knob.
End frame	\(\)	Set last frame to be saved using the front panel entry knob
Save	(1 to 220)	Save the waveforms between start frame and end frame
Load		Load the saved waveforms from non-volatile memory

Self-Test

Pressing the **Self-Test** key produces the SELF-TEST menu as follows:

Table 2-23

Menu	Settings
System Info	Press to display the information of the oscilloscope.
Screen Test	Press to run screen test program.
Key Test	Press to run front panel keys and knobs test program.

System Info

Press this menu button to display the information of oscilloscope. It contains the model number, number of power up times, serial number, software version, and installed module information of the oscilloscope. To exit the test, press the Run/Stop front panel key.

Screen Test

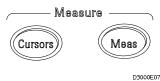
Press this menu button to run the Screen Test program. Follow the on screen message. The screen of the oscilloscope turns red, green and blue in sequence when pressing the Run/Stop front panel key. Check the screen for display failures.

Key Test

Pressing this menu button runs the front panel key and knob test program. The on screen rectangles represent the front panel keys. The rectangles with two arrows beside them represent the front panel knobs. The squares represent the knob presses for knobs like the **Scale** knobs. Test all keys and knobs and verify that all of the controls turn green.

To exit the key test, press the Run/Stop key three.

Language


The oscilloscope interface menus can be changed to other languages.

Automatic Measurements

The **Meas** button located on the front panel actives the automatic measurement system. The instruction below will guide you using the measurement function.

Pressing the **Meas** button produces the **MEASURE** menu used to select automatic measurement. The oscilloscope has 20 automatic measurements: Vpp, Vmax, Vmin, Vtop, Vbase, Vamp, Vavg, Vrms, Overshoot, Preshoot, Freq, Period, Rise Time, Fall Time, Delay1-2, Delay1-2, +Width, -Width, +Duty, and -Duty.

Figure 2-33

Meas Button

Table 2-24

MEASURE Menu				
Menu	Settings	Comments		
Source	CH1 CH2	Selects channel 1 or channel 2 as the waveform to be measured.		
Voltage		Selects the voltage measurement menu		
Time		Selects the time measurement menu		
Clear		Clears the on screen measurement results		
Display All	OFF ON	Turns off all measurement results Turns on all measurement results		

Voltage Measurements

Pressing the **Voltage** menu button produces the following menu.

Table 2-25 Voltage Measurement Menu 1

Menu 1	Comments
Voltage 1/3	Press to display menu 2 voltage measurements
Vpp	Measure peak-to-peak voltage of a waveform
Vmax	Measure maximum voltage of a waveform
Vmin	Measure minimum voltage of a waveform
Vavg	Measure average voltage of a waveform

Table 2-26 Voltage Measurement Menu 2

Menu	Comments
Voltage 2/3	Press to display menu 3 voltage measurements
Vamp	Measure voltage between Vtop and Vbase of a waveform
Vtop	Measure a flat top voltage of a waveform
Vbase	Measure a flat base voltage of a waveform
Vrms	Measure the root-mean-square voltage of a waveform

Table 2-27 Voltage Measurement Menu 3

Menu	Comments
Voltage 3/3	Press to display menu 1 voltage measurements
Overshoot	Measure the overshoot voltage in percentage of a waveform
Preshoot	Measure the preshoot voltage in percentage of a waveform

Time Measurements

Pressing the Time menu button produces the following menu.

Table 2-28 Time Measurement Menu 1

Menu	Comments
Time 1/3	Press to display menu 2 time measurements
Freq	Measure the frequency of a waveform
Period	Measure the period of a waveform
Rise Time	Measure the rise time of a waveform
Fall Time	Measure the fall time of a waveform

Table 2-29 Time Measurement Menu 2

Menu	Comments
Time 2/3	Press to display menu 3 time measurements
+Width	Measure the positive pulse width of a waveform
-Width	Measure the negative pulse width of a waveform
+Duty	Measure the positive duty cycle of a waveform
-Duty	Measure the negative duty cycle of a waveform

Table 2-30 Time Measurement Menu 3

Menu	Comments
Time 3/3	Press to display menu 1 time measurements
Delay1→2 	Measure the delay between two waveforms using the rising edges
Delay1→2 ₹	Measure the delay between two waveforms using the falling edges

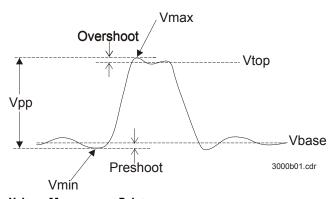
The results of the automatic measurements are displayed on the bottom of the screen. A maximum of three results can be displayed at the same time. The next new measurement result selected moves the previous measurements to the left pushing the first measurement result off screen.

Automatic Measurement Procedure

- 1 Select either CH1 or CH2 according to the waveform you want to measure.
- 2 To see all time and voltage measurement values, set the Display All menu to ON.
- **3** Select the voltage or time menu button to display an individual measurement.
- 4 Select the desired measurement menu button. The measurement result is displayed at the bottom of the screen. If the measurement result is displayed as "*****, then the measurement cannot be performed with the current oscilloscope settings.
- **5** Press the **Clear** menu button to remove all of the automatic measurements from the screen.

Measurement Concepts

This section describes the way that the automatic measurements are made.


Voltage Measurements

There are 10 automatic voltage measurements:

- Vpp (Peak-to-Peak Voltage)
- Vmax (Maximum Voltage)
- Vmin (Minimum Voltage)
- Vavg (Average Voltage)
- Vamp (Amplitude Voltage = Vtop Vbase)
- Vrms (Root-Mean-Square Voltage)
- Vtop (Top Voltage)
- Vbase (Base Voltage)
- Overshoot
- Preshoot

Figure 2-34 shows the voltage measurement points.

Figure 2-34

Voltage Measurement Points

Table 2-31

Measurement	Description
Vpp	Peak-to-peak voltage
Vmax	The maximum amplitude. The most positive peak voltage measured over the entire waveform.
Vmin:	The minimum amplitude. The most negative peak voltage measured over the entire waveform.
Vamp	Voltage between Vtop and Vbase of a waveform
Vtop	Voltage of the waveform's flat top, useful for square and pulse waveforms.
Vbase	$\label{thm:continuous} Voltage\ of\ the\ waveform's\ flat\ base,\ useful\ for\ square\ and\ pulse\ waveforms.$
Overshoot	Defined as (Vmax-Vtop)/Vamp, useful for square and pulse waveforms.
Preshoot	Defined as (Vmin-Vbase)/Vamp, useful for square and pulse waveforms.
Average	The arithmetic mean over the entire waveform.
Vrms	The true root-mean-square voltage over the entire waveform.

Time Measurements

There are 10 automatic time measurements:

- Frequency
- Period
- Rise Time
- Fall Time
- -Width
- +Width
- Delay 1→2 **f**
- Delay 1→2 **₹**
- -Duty
- +Duty

The following figures show how the different time measurements are made.

Figure 2-35
Frequency = 1/Period

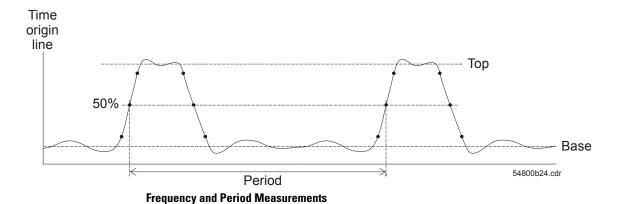
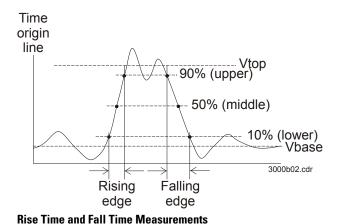
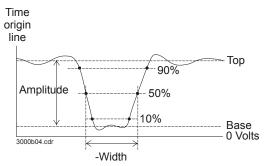
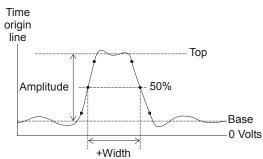
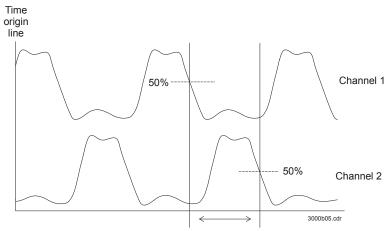
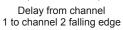
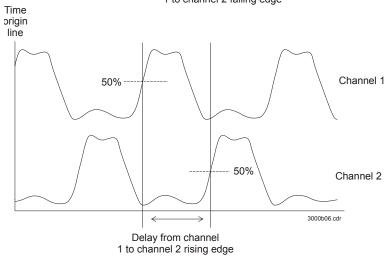


Figure 2-36

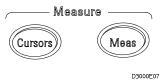

Figure 2-37





-Width and +Width Measurements

Figure 2-38



Delay Measurements

Cursor Measurements

Figure 2-39 shows the location of the ${\it Cursors}$ button on the front panel.

Figure 2-39

Cursors Button

There are three cursor measurement modes.

- Manual
- Track
- Auto Measure

Manual

In the manual mode, the screen displays two parallel cursors. You can move the cursors to make custom voltage or time measurements on the waveform. The cursor values are displayed in the boxes at the bottom of the menu. Before using cursors, you should make sure that you have set the waveform source to the channel that is to be measured.

Table 2-32

Menu	Settings	Comments
Mode	Manual	Set Manual mode for cursor measurement.
Type	Voltage Time	Use cursors to measure voltage parameters. Use cursors to measure time parameters.
Source	CH1 CH2 Math	Sets the measurement waveform source.

To do manual cursor measurements, use the following steps.

- 1 Press the Mode menu button until Manual appears.
- **2** Press the Source menu button until the source you want to measure appears.
- **3** Press Type menu button until the units that you want to measure appears.
- **4** Move the cursors to the desired measurement position using the information in Table 2-33.

Cursor movement is only possible while the CURSOR menu is being displayed.

Table 2-33

Cursor	Туре	Operation
Cursor A	Voltage	Turn the Vertical position knob to move cursor A up or down.
	Time	Turn the Vertical position knob to move cursor A left or right.
Cursor B	or B Voltage Turn the horizontal position knob to move cursor	
	Time	Turn the horizontal position knob to move cursor B left or right.

Table 2-34 Cursor Position Values

Menu	Туре	Description
CurA	Voltage Time	Shows the current voltage value for Cursor A. Shows the time position for Cursor A.
CurB	Voltage Time	Shows the current voltage value for Cursor A. Shows the time position for Cursor A.
$\Delta Y \\ \Delta X$	Voltage Time	Shows the voltage difference between Cursor A and Cursor B. Shows the time difference between Cursor A and Cursor B.
1/∆X	Time	Shows the frequency difference between Cursor A and Cursor B.

Track

In the track mode, the screen displays two cross hair cursors. The cross hair of the cursor is positioned on the waveform automatically. You can adjust the cursor's horizontal position on the waveform by turning the horizontal **position** knob. The oscilloscope displays the values of the coordinates in the boxes at the bottom of the menu.

Table 2-35

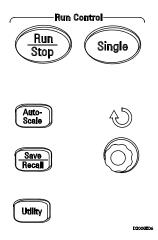
Menu	Settings	Comments
Mode	Track	Set Track mode in cursor measurement
Cursor A	CH1 CH2 None	Set Cursor A track the waveform on channel 1. Set Cursor A to track the waveform on channel 2. Turn off Cursor A.
Cursor B	CH1 CH2 None	Set Cursor B to track the waveform on channel 1. Set Cursor B to track the waveform on channel 2. Turn off Cursor B.
Coordinate (Press the menu key to toggle between Cursor A and Cursor B.)	Cur-Ax Cur-Ay Cur-Bx Cur-By	Displays the time value at the current position of Cursor A. Displays the voltage of the waveform at the current position of Cursor A. Displays the time value at the current position of Cursor B. Displays the voltage of the waveform at the current position of Cursor B.
Increment	Δ X 1/Δ X Δ Y	Display the X-axis increment and its reciprocal between the cursors You can switch the value display between ΔX or ΔY by pressing the key beside this menu ΔY Display the Y-axis increment between the cursors

In cursor track mode, the cursors move with the selected waveform.

Auto Measure

The Auto Measure mode is only available when Automatic Measurements are on. The oscilloscope displays cursors while automatically measuring the active measurements.

There will be no cursor display if no automatic measurements are selected in the MEASURE menu.


Auto-Scale and Run/Stop Buttons

The Auto-Scale button is used to automatically set the oscilloscope controls for the input waveform that is present at the input of the oscilloscope. The Run/Stop button is used to manually start or stop the oscilloscope's acquisition system from acquiring waveform data.

Auto-Scale Button

Figure 2-39 shows the location of the Auto-Scale button on the front panel.

Figure 2-40

Auto-Scale Button

The **Auto-Scale** feature automatically adjusts the scope to produce a usable display of the input waveform. When **Auto-Scale** button is pressed, the following menu will appear.

Table 2-36

Menu	Comments
Multi-cycle	Press to display a multi-cycle waveform on the screen.
Single-cycle	Press to display a single cycle waveform on the screen.
Rise Edge	Press to display the waveform's rising edge and measure its rise time automatically.
Fall Edge	Press to display the waveform's falling edge and measure its fall time automatically.
(Cancel)	Press to cancel all the Auto-Scale Set actions, the oscilloscope will recover to its previous state. $ \\$

After the Auto-Scale button is pressed the oscilloscope is configured to the following default control settings.

Table 2-37

Menu	Settings
Display format	Y-T
Sampling mode	Equal-time
Acquire mode	Normal
Vertical coupling	Adjust to AC or DC according to the waveform.
Vertical "V/div"	Adjusted
Volts/Div	Coarse
Bandwidth limit	Full
Waveform invert	OFF
Horizontal position	Center
Horizontal "S/div"	Adjust to right position
Trigger type	Edge
Trigger source	$\label{thm:measure} \mbox{Measure the channel with input waveform automatically}.$
Trigger coupling	DC
Trigger voltage	Midpoint setting
Trigger mode	Auto
POS knob	Trigger offset

Run/Stop Button

The **Run/Stop** front panel button starts and stops the oscilloscope's acquisition system from acquiring waveform data. When stopped, the button is red and the volts/div and horizontal time base can be adjusted within a fixed range. When the horizontal scale is 50 ms/div or faster, the horizontal time base can be expanded by 5 divisions up or down.

Specifications and Characteristics

Specifications

All specifications are warranted. Specifications are valid after a 30-minute warm-up period and ± 5 °C from last calibration temperature.

Bandwidth (-3dB) DS03062A: 60 MHz

DS03102A: 100 MHz DS03152A: 150 MHz DS03202A: 200 MHz

DC Vertical Gain Accuracy 2 mV/div to 5 mV/d: ±4.0% full scale

10 mV/div to 5 V/div: ±3.0% full scale

Characteristics

All characteristics are the typical performance values and are not warranted. Characteristics are valid after a 30-minute warm-up period and ± 5 °C from last calibration temperature.

Acquisition System

Max Sample rate 1 GSa/s
Vertical Resolution 8 bits
Peak Detection 5 ns

Averages selectable from 2, 4, 8, 16, 32, 64, 128, and 256

Vertical System

Analog channels Channels 1 and 2 simultaneous acquisition

DS03062A: 60 MHz DS03102A: 100 MHz DS03152A: 150 MHz DS03202A: 200 MHz DS03202A: 1.8 ns

Calculated rise time DS03202A: 1.8 ns (= 0.35/bandwidth) DS03152A: 2.3 ns DS03102A: 3.5 ns

DS03102A: 3.5 ns DS03062A: 5.8 ns 2 mV/div to 5 V/div

Range 1 2 mV/div to 5 V/div Maximum Input $^{\wedge}$ CAT II 1 M Ω 300 Vrms

Offset Range ±2 V 2 mV/div to 100 mV/div

±40 V on ranges 102 mV/div to 5 V/div

 $\begin{array}{lll} \mbox{Input Resistance} & 1 \mbox{ M}\Omega \pm 1\% \\ \mbox{Input Capacitance} & \sim 13 \mbox{ pF} \\ \mbox{Coupling} & \mbox{AC, DC, ground} \\ \mbox{BW Limit} & \sim 20 \mbox{ MHz} \end{array}$

ESD Tolerance $\pm 2 \text{ kV}$ DC Vertical Gain Accuracy $2 \text{ mV/div to 5 mV/div: } \pm 4\%$

10 mV/div to 5 V/div ±3%

DC Measurement $\pm (3\% \text{ x reading} + 0.1 \text{ div} + 1 \text{mV}) \text{ when } 10 \text{ mV/div or greater is selected and vertical position}$ ($\geq 16 \text{ waveform averages}$)

 \pm (3% x (reading + vertical position) + 1% of vertical position + 0.2 div) when 10 mV/div or

greater is selected and vertical position is not at zero Add 2 mV for settings from 2 mV/div to 200 mV/div

Horizontal

2 ns/div to 50 s/div Range

Timebase Accuracy ± 100 ppm over any time interval ≥ 1 ms

Modes Main, Delayed, Roll, XY

Trigger System

Sources Channel 1, channel 2, ac line, ext, and ext/5

Auto and Normal Sweep **Holdoff Time** 100 ns to 1.5 s

Selections

Trigger on a rising or falling edge of any source Edge

Pulse Width Trigger when a positive-going or negative-going pulse is less than, greater than, or equal

to a specified value on any of the source channels

Range: 20 ns to 10 s

Video Trigger on any analog channel for NTSC, PAL, or SECAM broadcast standards on either

positive or negative composite video signals. Modes supported include Even Field, Odd

Field, all lines, or any line within a field.

Maximum Input

CAT II 300 Vrms

Trigger Level Range

Internal ±12 divisions from center screen

EXT ± 2.4 V EXT/5 ± 12 V

Sensitivity

DC CH1, CH2: 1 div (DC to 10 MHz)

1.5 div (10 MHz to full bandwidth)

EXT: 100 mV (DC to 10 MHz), 200 mV (10 MHz to full bandwidth) EXT/5: 500 mV (DC to 10 MHz), 1 V (10 MHz to full bandwidth)

AC Same as DC at 50 Hz and above

Same as DC limits for frequencies above 100 kHz. Waveforms below 8 kHz are attenuated LF Reject **HF Reject** Same as DC limits for frequencies from DC to 10 kHz. Frequencies above 150 kHz are

attenuated

Display System

Display 5.7-inch (145 mm) diagonal liquid crystal display

240 vertical by 320 horizontal pixels Resolution

Display Brightness Adjustable Measurements

Automatic Measurements

Voltage Peak-to-Peak (Vpp), Maximum (Vmax), Minimum (Vmin), Average (Vavq), Amplitude

(Vamp), Top (Vtop), Base (Vbase), Overshoot, Preshoot, RMS (Vrms)

Time Frequency (Freq), Period, Positive Pulse Width (+Width), Negative Pulse Width (-Width),

Positive Duty Cycle (+Duty), Minus Duty Cycle (-Duty), Rise Time, Fall Time, Rising Edge Time Delay from Channel 1 to Channel 2 (Delay1→2 ៛), Falling Edge Time Delay from

Channel 1 to Channel 2 (Delay1→2 ₹), Hardware Counter

General Characteristics

Physical:

Size 350 mm wide x 288 mm high x 145 mm deep (without handle)

Weight 4.8 kgs

Calibrator Output Frequency 1 kHz; Amplitude 3 Vpp into 1 M Ω load

Power Requirements

Line Voltage Range 100 to 240 VAC ±10%, CAT II, automatic selection

Line Frequency 50 to 440 Hz Power Usage 50 VA max

Environmental Characteristics

Ambient Temperature Operating 0 °C to +55 °C

Non-operating -40 °C to +70 °C

Humidity Operating 95% RH at 40 °C for 24 hr

Non-operating 90% RH at 65 °C for 24 hr

Altitude Operating to 4,570 m (15,00 ft)

Non-operating to 15,244 m (50,000 ft)

Vibration HP/Agilent class B1

Shock HP/Agilent class B1

Pollution degree 2 Normally only dry non-conductive pollution occurs. Occasionally a temporary

conductivity caused by condensation must be expected.

Indoor use only

This instrument is rated for indoor use only

Installation categories CAT I: Mains isolated

CAT II: Line voltage in appliance and to wall outlet

Service

Returning the oscilloscope to Agilent Technologies for service

Before shipping the oscilloscope to Agilent Technologies, contact your nearest Agilent Technologies oscilloscope Support Center (or Agilent Technologies Service Center if outside the United States) for additional details.

- 1 Write the following information on a tag and attach it to the oscilloscope.
 - Name and address of owner
 - oscilloscope model numbers
 - oscilloscope serial numbers
 - Description of the service required or failure indications
- **2** Remove all accessories from the oscilloscope.

Accessories include all cables. Do not include accessories unless they are associated with the failure symptoms.

- **3** Protect the oscilloscope by wrapping it in plastic or heavy paper.
- 4 Pack the oscilloscope in foam or other shock absorbing material and place it in a strong shipping container.

You can use the original shipping materials or order materials from an Agilent Technologies Sales Office. If neither are available, place 8 to 10 cm (3 to 4 inches) of shock-absorbing material around the oscilloscope and place it in a box that does not allow movement during shipping.

- **5** Seal the shipping container securely.
- 6 Mark the shipping container as FRAGILE.

In any correspondence, refer to oscilloscope by model number and full serial number.

Testing Performance

This section documents performance test procedures. Performance verification for the products covered by this manual consists of three main steps:

- Performing the internal product self-tests to ensure that the measurement system is functioning properly
- Calibrating the product
- Testing the product to ensure that it is performing to specification

Performance Test Interval

The procedures in this section may be performed for incoming inspection and should be performed periodically to verify that the oscilloscope is operating within specification. The recommended test interval is once per year or after 2000 hours of operation. Performance should also be tested after repairs or major upgrades.

Performance Test Record

A test record form is provided at the end of this section. This record lists performance tests, test limits and provides space to record test results.

Test Order

The tests in this section may be performed in any order desired. However, it is recommended to conduct the tests in the order presented in this manual as this represents an incremental approach to performance verification. This may be useful if you are attempting to troubleshoot a suspected problem.

Test Equipment

Lists of equipment needed to conduct each test are provided for each test procedure. The procedures are written to minimize the number and types of oscilloscopes and accessories required. The oscilloscopes in these lists are ones that are currently available for sale by Agilent at the time of writing this document. In some cases, the test procedures use features specific to the oscilloscopes in the

Testing Performance

recommended equipment list. However, with some modification to the test procedures, oscilloscopes, cables and accessories that satisfy the critical specifications in these lists may be substituted for the recommended models with some modification to the test procedures.

Contact Agilent Technologies for more information about the Agilent products in these lists.

Before Performing Performance Verification Testing

Let the oscilloscope warm up before testing

The oscilloscope under test must be warmed up (with the oscilloscope application running) for at least 30 minutes prior to the start of any performance test.

Equipment Required

Description	Critical Specifications	Recommended Model/ Part Numbers
Digital Multimeter	DC voltage measurement accuracy better than ±0.1% of reading	Agilent 34401A
Cable Assembly	50Ω characteristic impedance	Agilent 54855-61620
Cable Assembly	RS-232 (f)(f)	Agilent 34398A
Adapter	BNC Barrel (f)(f)	Agilent 1250-0080
Adapter	BNC shorting cap	Agilent 1250-0929
Adapter	Precision BNC (2)	Agilent 54855-67604
Adapter	BNC (f) to dual banana	Agilent 1251-2277

Calibration

- ${f 1}$ Push the **Utility** button on the front panel.
- **2** Select Self-Cal menu item in the Utility menu.
- **3** Follow the on-screen instructions.

Vertical Performance Verification

This section contains the following vertical performance verification:

- DC Gain Accuracy Test
- Analog Bandwidth Test

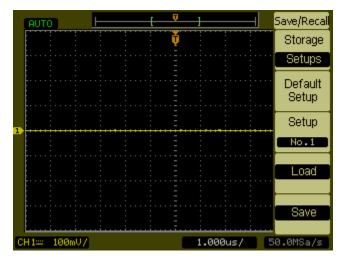
DC Gain Accuracy Test

CAUTION

Ensure that the input voltage to the oscilloscope never exceeds 300 Vrms.

Specifications

DC Gain Accuracy	2 mV/div to 5 mV/d: ±4.0% full scale 10 mV/div to 5 V/div: ±3.0% full scale
Full scale is defined as 8 vertical div 2 V, and 5 V.	visions. The major scale settings are 2 mV, 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 500 mV, 1 V, $^{\circ}$


Equipment Required

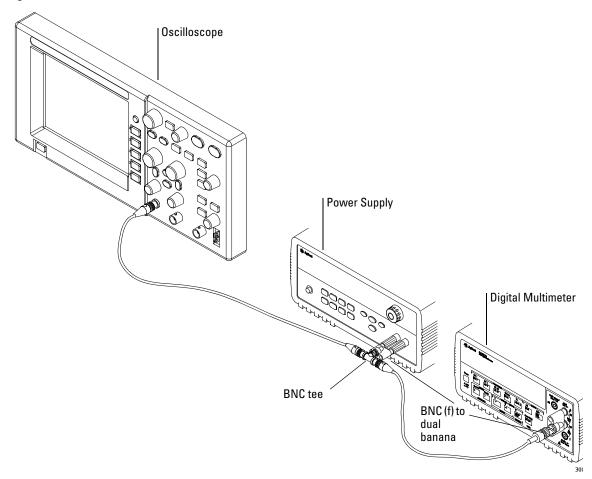
Description	Critical Specifications	Recommended Model/ Part Numbers
Power Supply	0 V to 35 V dc; 10 mV resolution	Agilent E3633A or E3634A
Digital Multimeter	DC voltage measurement accuracy better than ±0.1% of reading	Agilent 34401A
Cable Assembly (2 required)	50Ω characteristic impedance, BNC (m) connectors	Agilent 8120-1840
Adapter	BNC Tee (m)(f)(f)	Agilent 1250-0781
Adapter (2 required)	BNC (f) to dual banana	Agilent 1251-2277

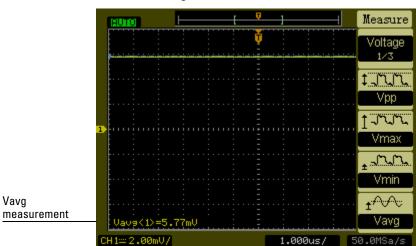
Procedure


- 1 Disconnect all cables from the oscilloscope channel inputs.
- 2 Press the Save/Recall front panel button.
- ${\bf 3} \ \ {\bf Select the} \ {\bf Storage} \ item in the \ {\bf Save/Recall} \ menuuntil \ {\bf Setups} \ appears.$

Figure 4-1

- 4 Select the **Default Setup** item in the Save/Recall menu.
- 5 Press the Acquire front panel button.
- 6 Select the mode item in the Acquire menu until Average appears.
- 7 Select the Averages item in the Acquire menu until 256 appears.


Figure 4-2


 $\boldsymbol{8}~$ Set the channel 1 vertical sensitivity value to 2 mV/div.

- **9** Set the power supply to +6 mV.
- 10 Connect the equipment as shown in Figure 4-3.

Figure 4-3

- 11 Press the **Meas** button on the front of the oscilloscope.
- 12 Select the Voltage menu item.

13 Select the Vavg measurement as shown below.

- 14 Record the DMM voltage reading as V_{DMM+} and the oscilloscope Vavg reading as V_{Scope+} in the DC Gain Test section of the Performance Test Record.
- 15 Repeat step 14 for the remaining vertical sensitivities for channel 1 in the DC Gain Test section of the Performance Test Record.
- **16** Set the power supply voltage to +6 mV.
- 17 Move the BNC cable on channel 1 to channel 2.
- 18 Press the Save/Recall front panel button.
- 19 Select the Storage item in the Save/Recall menu until Setups appears.
- 20 Select Default Setup in the Save/Recall menu.
- **21** Set the channel 2 vertical sensitivity value to 2 mV/div.
- **22** Press the **Meas** button on the front of the oscilloscope.
- **23** Select the **Voltage** menu item.
- **24** Select the **Vavg** measurement.
- $\bf 25~Record~the~DMM~voltage~reading~as~V_{DMM-}$ and the oscilloscope Vavg reading as $\rm V_{Scope-}$ in the DC Gain Test section of the Performance Test Record.
- **26** Repeat step 25 for the remaining vertical sensitivities for channel 2 in the DC Gain section of the Performance Test Record.

Vava

27 Calculate the DC Gain using the following expression and record this value in the DC Gain Test section of the Performance Test Record:

$$DCGain = \frac{\Delta V_{out}}{\Delta V_{in}} = \frac{V_{scope+} - V_{scope-}}{V_{DMM+} - V_{DMM-}}$$

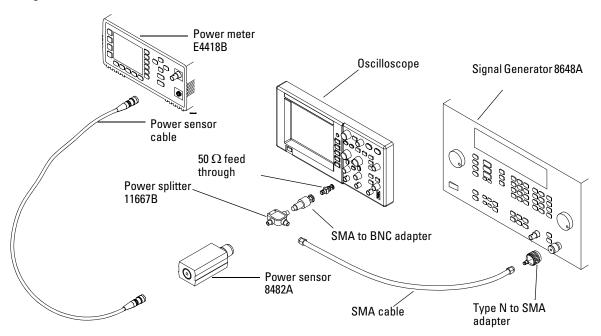
Analog Bandwidth - Maximum Frequency Check

CAUTION

Ensure that the input voltage to the oscilloscope never exceeds 300 Vrms.

Specification

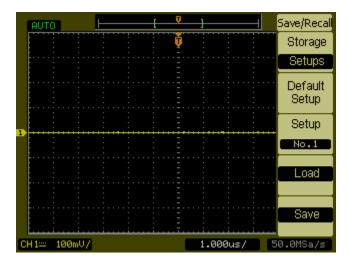
Analog Bandwidth (-3 dB)			
DS03062A	60 MHz		
DS03102A	100 MHz		
DS03152A	150 MHz		
DS03202A	200 MHz		


Equipment Required

Description	Critical Specifications	Recommended Model/ Part Numbers
Signal Generator	100 kHz to 1 GHz at 200 mVrms	Agilent 8648A
Power Splitter	outputs differ by < 0.15 dB	Agilent 11667B
Power Meter	Agilent E-series with power sensor compatibility	Agilent E4418B
Power Sensor	100 kHz to 1 GHz ±3% accuracy	Agilent 8482A
SMA Cable	SMA (m) to SMA (m) 24 inch	
Adapter	50Ω BNC feed through terminator	
Adapter	Type N (m) to SMA (f)	Agilent 1250-1250
Adapter	Type SMA (m) to BNC (m)	Agilent 1250-0831

Connections

Connect the equipment as shown in Figure 4-4.


Figure 4-4

Procedure

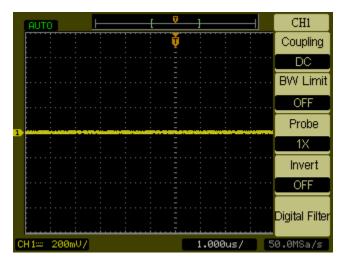

- 1 Preset and calibrate the power meter according to the instructions found in the power meter manual.
- 2 Set up the Power Meter to display measurements in units of Watts.
- ${\bf 3}~$ On the oscilloscope, press the ${\bf Save/Recall}$ front panel button.
- 4 Select the Storage item in the Save/Recall menu until Setups appears.

Figure 4-5

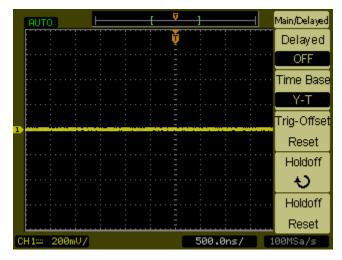

- 5 Select the **Default Setup** item in the Save/Recall menu.
- **6** Press the **Autoscale** front panel button.
- 7 Set the channel 1 vertical scale to 200 mV/div.

Figure 4-6

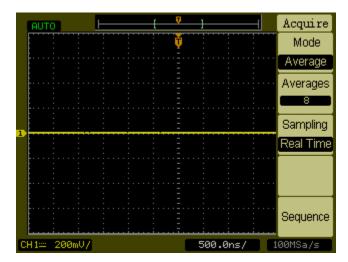
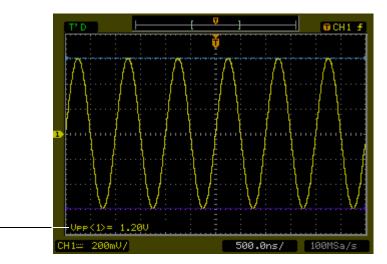

8 Set the horizontal scale to 500 ns/div.

Figure 4-7

- **9** Press the **Acquire** front panel button.
- 10 Select the Mode menu item until Average appears.
- 11 Select the Average menu item until 8 appears.


Figure 4-8

- 12 Press the Meas front panel button.
- 13 Select the Voltage menu item.

- 14 Select the Voltage menu item until 2/3 appears.
- 15 Select the Vpp menu item.
- **16** Set the signal generator to a 1 MHz sine wave with a peak-to-peak amplitude of about 6 divisions as it appears on the oscilloscope screen.

Figure 4-9

Vpp reading

17 Using the Vpp reading, calculate the Vrms value using the following expression and record it in the Performance Test Record (page 4-126):

$$Vout_{1MHz} = \frac{Vpp_{1MHz}}{2\sqrt{2}}$$

Example

For
$$Vpp = 1.20 V$$

$$Vout_{1MHz} = \frac{1.20}{2\sqrt{2}} = \frac{1.20}{2.828} = 424 \text{ mV}$$

18 Using the power meter reading, convert this measurement to Volts RMS using the expression and record it in the Performance Test Record (page 4-126):

$$Vin_{1MHz} = \sqrt{P_{meas} \times 50\Omega}$$

Example

For Pmeas = 3.65 mW.

$$Vin_{1MHz} = \sqrt{3.65 \text{ mW} \times 50\Omega} = 427 \text{ mV}$$

19 Calculate the reference gain as follows:

$$Gain_{1MHz} = \frac{Vout_{1MHz}}{Vin_{1MHz}}$$

Record this value in the Calculated Gain @ 1 MHz column of the Performance Test Record (page 4-126).

20 Change the signal generator frequency to the value for the model being tested as shown in the table below.

Setting	Model				
	DS03062A	DS03102A	DS03152A	DS03202A	
Frequency	60 MHz	100 MHz	150 MHz	200 MHz	
Time Base	10 ns/div	5 ns/div	5 ns/div	2 ns/div	

- **21** Change the oscilloscope time base to the value for the model being tests as shown in the table above.
- **22** Using the Vpp reading, calculate the Vrms value using the following expression and record it in the Performance Test Record (page 4-126):

$$Vout_{max} = \frac{Vpp_{max}}{2\sqrt{2}}$$

Analog Bandwidth - Maximum Frequency Check

Example

For Vpp = 1.24 V

$$Vout_{max} = \frac{1.05}{2.\sqrt{2}} = \frac{1.05}{2.828} = 371 \text{ mV}$$

23 Using the power meter reading, convert this measurement to Volts RMS using the expression and record it in the Performance Test Record (page 4-126):

$$Vin_{max} = \sqrt{P_{meas} \times 50\Omega}$$

Example

For Pmeas = 3.65 mW.

$$Vin_{max} = \sqrt{3.65 \text{ mW} \times 50\Omega} = 427 \text{ mV}$$

24 Calculate the gain at the maximum frequency using the expression and record it in the Performance Test Record (page 4-126):

$$Gain_{max} = 20 \log_{10} \left[\frac{(Vout_{max})/(Vin_{max})}{Gain_{1MHz}} \right]$$

Example

For example, if (Vout @ Max Frequency) = 371 mV, (Vin @ Max Frequency) = 427 mV and Gain @ 1 MHz = 0.993, then:

$$Gain_{Max \text{ Freq}} = 20 \log_{10} \left[\frac{371 \text{ mV} / 427 \text{ mV}}{0.993} \right] = -1.16 \text{ dB}$$

Record this value in the Calculated Gain @Max Freq column in the Analog Bandwidth - Maximum Frequency Check section of the Performance Test Record. To pass this test, this value must be greater than -3.0 dB.

25 Move the power splitter from channel 1 to channel 2 and repeat steps 3 through 24 using channel 2 as the source.

Performance Test Record

DC Gain Test

Vertical Sensitivity	Power Supply Setting	V _{DMM+}	V _{DMM} -	V _{Scope+}	V _{Scope} -	Calculated DC Gain	Offset Gain Test Limits
Channel 1	1	I.		JI.		1	•
2 mV/div	±6 mV						+0.96 to +1.04
5 mV/div	±15 mV						+0.96 to +1.04
10 mV/div	±30 mV						+0.97 to +1.03
20 mV/div	±60 mV						+0.97 to +1.03
50 mV/div	±150 mV						+0.97 to +1.03
100 mV/div	±300 mV						+0.97 to +1.03
200 mV/div	±600 mV						+0.97 to +1.03
500 mV/div	±1.5 V						+0.97 to +1.03
1 V/div	±2.4 V						+0.97 to +1.03
2 V/div	±6.0 V						+0.97 to +1.03
5 V/div	±15.0 V						+0.97 to +1.03
Channel 2	1	I.		JI.		1	•
2 mV/div	±6 mV						+0.96 to +1.04
5 mV/div	±15 mV						+0.96 to +1.04
10 mV/div	±30 mV						+0.97 to +1.03
20 mV/div	±60 mV						+0.97 to +1.03
50 mV/div	±150 mV						+0.97 to +1.03
100 mV/div	±300 mV						+0.97 to +1.03
200 mV/div	±600 mV						+0.97 to +1.03
500 mV/div	±1.5 V						+0.97 to +1.03
1 V/div	±2.4 V						+0.97 to +1.03
2 V/div	±6.0 V						+0.97 to +1.03
5 V/div	±15.0 V						+0.97 to +1.03

Analog Bandwidth - Maximum Frequency Check

Max frequency: DSO3062A = 60 MHz, DSO3102A = 100 MHz, DSO3152A = 150 MHz, DSO31202A = 200 MHz

	Vin @ 1 MHz	Vout @ 1 MHz	Calculated Gain @ 1 MHz (Test Limit = greater than -3 dB)	Vin @ Max Freq	Vout @ Max Freq	Calculated Gain @ Max Freq (Test Limit = greater than -3 dB)
Channel 1						
Channel 2						

Index

A	Manual 92	power cable 10
accessories	Track mode 94	Oscilloscope
supplied 8	Cursors	Cleaning 19
Acquire	Auto measure 95	oscilloscope
Analog 61		cleaning 19
Anti-aliasing 62	D	inspecting 8
Average 59	Digital filter controls 32	
Equivalent time sampling 59	Display	P
Peak detect 61	Controls 63	package contents 8
Aliasing 62		packing for return 108
Analog acquisition 61	E	Peak detect 61
Anti-aliasing 62	Edge trigger 53	performance characteristics 101
Auto measurement cursors 95	Equivalent time sampling 59	plugs
Automatic measurements 82	Equivalent time sampling 59	power 10
Auto-scale 18	T2	power cables 10
Auto-Scale button 97	F	Probe Attenuation control 31
Average acquisition 59	Functional check 11	Probes
		Compensating 13
В	G	Pulse width trigger 56
Bandwidth limit control 29	GPIB control 75	Tube with dissel of
Dandwidth inflit Control 29		R
\mathbf{c}	Н	Recalling
	Horizontal	Factory setup 65, 67, 71
cables	Controls 43	Setups 65, 67, 71
power 10	Main/Delayed control 46	Waveforms 65, 67, 71
Calibration		Ref control 39
Oscilloscope 76	I	
cautions	I/O settings 75	returning the instrument to Agilent 108 Roll mode 58
cleaning 19	inspecting the oscilloscope 8	RS-232 control 75
Channel	Invert control 34	Run button 99
Digital filter control 32	nivers contains of	Run button 99
Invert control 34	L	S
Probe attenuation control 31		_
Volts/Div control 33	Language control 81	Self-Cal control 76
Channel Controls	**	Self-Test 80
Coupling 26	M	standard accessories 8
Channels	Manual cursor measurements 92	Stop button 99
Bandwidth limit control 29	manuals 8	Stop control 59
checking the oscilloscope 8	Math functions 36	Storing
Cleaning oscilloscope 19	Measurement	Setups 65, 67, 71
cleaning the instrument 129	Concepts 86	Waveforms 65, 67, 71
cleaning the oscilloscope 19	Measurements	
Compensating probes 13	Automatic 82	T
contents	Cursor 91	Testing oscilloscope 11
of oscilloscope package 8	Time 84	Time measurements 84
Controls		Timebase
Vertical 23	0	Main/Delayed 46
Coupling control 26	options	Track cursors 94
Cursor measurements 91	•	

```
Trigger
   Controls 50
   Edge 53
   Pulse width 56
   Types 53
   Video 53
Trigger holdoff control 49
\mathbf{U}
Utility
   Controls 74
   GPIB control 75
   I/O settings 75
   Language control 81
   RS-232 control 75
   Self-Cal control 76
   Self-Test 80
   Waveform recorder control 78
\mathbf{v}
Vertical
   Bandwidth limit control 29
   Controls 23
   Coupling control 26
   Digital filter control 32
   Invert control 34
   Math functions control 36
   Probe attenuation control 31
   Ref control 39
   Volts/Div control 33
Video trigger 53
Volts/Div control 33
W
Waveform
   Controls 57
   Roll mode 58
Waveform recorder control 78
```

Safety Notices

This apparatus has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Measuring Apparatus, and has been supplied in a safe condition. This is a Safety Class I instrument (provided with terminal for protective earthing). Before applying power, verify that the correct safety precautions are taken (see the following warnings). In addition, note the external markings on the instrument that are described under "Safety Symbols."

Warnings

- · Before turning on the instrument, you must connect the protective earth terminal of the instrument to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. You must not negate the protective action by using an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.
- Only fuses with the required rated current, voltage, and specified type (normal blow, time delay, etc.) should be used. Do not use repaired fuses or short-circuited fuseholders. To do so could cause a shock or fire hazard.
- If you energize this instrument by an auto transformer (for voltage reduction or mains isolation), the common terminal must be connected to the earth terminal of the power source.

- Whenever it is likely that the ground protection is impaired, you must make the instrument inoperative and secure it against any unintended operation.
- Service instructions are for trained service personnel. To avoid dangerous electric shock, do not perform any service unless qualified to do so. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.
- Do not install substitute parts or perform any unauthorized modification to the instrument.
- Capacitors inside the instrument may retain a charge even if the instrument is disconnected from its source of supply.
- Do not operate the instrument in the presence of flammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.
- Do not use the instrument in a manner not specified by the manufacturer.

To clean the instrument

If the instrument requires cleaning: (1) Remove power from the instrument. (2) Clean the external surfaces of the instrument with a soft cloth dampened with a mixture of mild detergent and water. (3) Make sure that the instrument is completely dry before reconnecting it to a power source.

Safety Symbols

Instruction manual symbol: the product is marked with this symbol when it is necessary for you to refer to the instruction manual in order to protect against damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used to indicate a circuit common connected to grounded chassis.

Notices

© Agilent Technologies, Inc. 2005. 2007

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

D3000-97012, February 2007

Print History

D3000-97000, March 2005 D3000-97012, February 2007

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract. Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995). or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Document Warranty

The material contained in this document is provided "as is." and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

Trademark Acknowledgements

Windows and MS Windows are U.S. registered trademarks of Microsoft Corporation.

MATLAB is a U.S. registered trademark of MathWorks.

Mathcad is a U.S. registered trademark of Mathsoft.