The antiferromagnetic (AFM) model describes a system of spins where adjacent spins are aligned oppositely. This leads to a ground state with zero net magnetization, and it can be studied using various techniques including the Heisenberg model.
The matrix representation for the Hamiltonian with two spins can be constructed as follows:
$$ H = \begin{pmatrix} \frac{3J}{4} & 0 & 0 & 0 \\ 0 & -\frac{J}{4} & -\frac{J}{4} & 0 \\ 0 & -\frac{J}{4} & -\frac{J}{4} & 0 \\ 0 & 0 & 0 & -\frac{3J}{4} \end{pmatrix} $$The matrix representation for the Hamiltonian with three spins:
$$ H = \begin{pmatrix} \frac{3J}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{J}{4} & -\frac{J}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{J}{4} & -\frac{J}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{J}{4} & -\frac{J}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{J}{4} & -\frac{J}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{J}{4} & -\frac{J}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{J}{4} & -\frac{J}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{3J}{4} \end{pmatrix} $$The matrix representation for the Hamiltonian with four spins with periodic boundary conditions:
$$ H = \begin{pmatrix} -\frac{3J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{J}{2} & -\frac{J}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{3J}{2} \end{pmatrix} $$To calculate the variational energy of a Gutzwiller wave function for a chain of 16 spins, we can implement a Variational Monte Carlo (VMC) approach.
import numpy as np
# Define constants
L = 16 # Number of spins
J = 1.0 # Coupling constant
def hamiltonian_element(state, i, j):
"""Calculate the Hamiltonian matrix element for spins i and j."""
if abs(i - j) == 1 or (i == 0 and j == L - 1) or (i == L - 1 and j == 0):
return -J * 0.5 # Nearest neighbor interaction
return 0.0
def gutzwiller_wave_function(state, g):
"""Calculate the Gutzwiller wave function."""
return np.exp(-g * np.sum(state)) # Example functional form
def variational_energy(g):
"""Calculate the variational energy given the Gutzwiller parameter g."""
energy = 0.0
num_states = 2**L
for i in range(num_states):
state = np.array([int(x) for x in f"{i:0{L}b}"]) # Binary representation of state
wf = gutzwiller_wave_function(state, g)
# Calculate the energy contribution for this state
state_energy = 0.0
for a in range(L):
for b in range(L):
state_energy += hamiltonian_element(state, a, b) * wf
energy += np.real(np.conj(wf) * state_energy)
return energy / num_states # Normalize by the number of states
# Main optimization loop
g_start = 0.5 # Initial guess for Gutzwiller parameter
learning_rate = 0.01
num_iterations = 100
g = g_start
for iteration in range(num_iterations):
energy = variational_energy(g)
print(f"Iteration {iteration}: g = {g:.3f}, Variational Energy = {energy:.3f}")
# Update g using a simple gradient descent (placeholder)
g -= learning_rate * (energy - np.mean(energy)) # A simplistic update rule
print(f"Optimized Gutzwiller parameter: {g:.3f}")
To handle larger systems, we can compute matrix elements on-the-fly instead of storing the entire Hamiltonian matrix.
import numpy as np
# Define constants
L = 16 # Number of spins
J = 1.0 # Coupling constant
def hamiltonian_element(state, i, j):
"""Calculate the Hamiltonian matrix element for spins i and j."""
if abs(i - j) == 1 or (i == 0 and j == L - 1) or (i == L - 1 and j == 0):
return -J * 0.5 # Nearest neighbor interaction
return 0.0
def gutzwiller_wave_function(state, g):
"""Calculate the Gutzwiller wave function."""
return np.exp(-g * np.sum(state)) # Example functional form
def variational_energy(g):
"""Calculate the variational energy given the Gutzwiller parameter g."""
energy = 0.0
num_states = 2**L
for i in range(num_states):
state = np.array([int(x) for x in f"{i:0{L}b}"]) # Binary representation of state
wf = gutzwiller_wave_function(state, g)
# Calculate the energy contribution for this state
state_energy = 0.0
for a in range(L):
for b in range(L):
state_energy += hamiltonian_element(state, a, b) * wf
energy += np.real(np.conj(wf) * state_energy)
return energy / num_states # Normalize by the number of states
# Main optimization loop
g_start = 0.5 # Initial guess for Gutzwiller parameter
learning_rate = 0.01
num_iterations = 100
g = g_start
for iteration in range(num_iterations):
energy = variational_energy(g)
print(f"Iteration {iteration}: g = {g:.3f}, Variational Energy = {energy:.3f}")
# Update g using a simple gradient descent (placeholder)
g -= learning_rate * (energy - np.mean(energy)) # A simplistic update rule
print(f"Optimized Gutzwiller parameter: {g:.3f}")