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FIG. 38-8 Photographs showing the buildup of an interfer-
ence pattern by a beam of electrons in a two-slit interfer-
ence experiment like that of Fig. 38-6. Matter waves, like
light waves, are probability waves. The approximate num-
bers of electrons involved are (a) 7, (b) 100, (¢) 3000,

(d) 20 000, and (e) 70 000. (Courtesy A. Tonomura,J. Endo,
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3.3 ffali—{[E K7 Describing a Wave
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The red dot moves with the phase velocity,
and the green dots propagate with the group velocity. (from Wikipedia)

See also http://140.122.141.1/demolab/phpBB/viewtopic.php?topic=14610
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3.1 DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency » has the momentum

since Av = c. The wavelength of a photon is therefore specified by its momentum
according to the relation

Photon wavelength A= — (3.1)

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity v
is p = ymu, and its de Broglie wavelength is accordingly

cacitbi h
De Broglie \ = 1 (3.2)

wavelength mu Y=
i 4 A x’l . Uzﬁz




Find the de Broglie wavelength of a 1.00-MeV proton. Is a
relativistic calculation needed?

The proton’s kinetic energy is only about 0.1% of its rest energy, so a

nonrelativistic calculation will suffice. The wavelength is

) — h B h . hc
P V2mKE /2 (me?) KE
1.240 x 10~12 MeV-m

~ /2 (939.3 MeV) (1.00 MeV)

— 2.86 x 10~ 14 m.

Note the conversion of units in the product hc in the above calculation.



Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an
electron with a velocity of 107 m/s.

Solution

(@) Since v << ¢, we can let y = 1. Hence

h 6.63 X 107717~
A = — J's 48 %10 m
mv (0.046 kg)(30 m/s)

The wavelength of the golf ball is so small compared with its dimensions that we would not
expect to find any wave aspects in its behavior.

(b) Again v << ¢, so with m = 9.1 X 107! kg, we have

h 663X 107 ] s
muv (9.1 x 107! kg}{lﬂT m/s)

=73x100" m

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for
instance, is 5.3 X 10~ """ m. It is therefore not surprising that the wave character of moving elec-
trons is the key to understanding atomic structure and behavior.



3.2 WAVES OF WHAT?
Waves of probability

Max Born (1882—-1970)

The probability of experimentally finding the body described by the wave function
W at the point x, y, z, at the time t is proportional to the value of [¥|* there at t.

This interpretation was first made by Max Born in 1926.

A large value of [¥|* means the strong possibility of the body’s presence, while a small
value of |¥|* means the slight possibility of its presence. As long as [W|” is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.



3.3 DESCRIBING A WAVE

A general formula for waves

If we call the de Broglie wave velocity v,, we can apply the usual formula
Up = VA

to find v,. The wavelength A is simply the de Broglie wavelength A = h/ymuv. To find
the frequency, we equate the quantum expression E = hv with the relativistic formula
for total energy E = ymc” to obtain

hy = ymc?
ymc?
1}' —
h

The de Broglie wave velocity is therefore

De Broglie phase mc? h C
e v = 1A = (7 e (3.3)
velocity h ymuv v
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y=A cos 2mvt

Wave formula y = A cos ZWV(E s i) (3.5)

UI.‘.I

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x = 0.
Equation (3.5) may be rewritten

U

5%
y = A cos lﬂ'(vt = —)
P



.
y=Ac0521T(vt— I) y = A cos (wt — kx)

Angular frequency w = 27V

Wave number k= =



3.4 PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as

the waves themselves A 4

Wave vgrc:-up

we expect the wave representation of a moving body to correspond to a wave
packet, or wave group, like that shown in Fig. 3.3, whose waves have amplitudes
upon which the likelihood of detecting the body depends.

Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.



v = A cos (wt — kx)

vy, = A cos [(w + Aw)t — (kR + AR)x]

cosa + cos B = 2 cos ;(a + B) cos s(a@ — B) cos(—0) = cos 0

Vi=y§ = Y

= 2A cos 3 [2w + Aw)t — (2k + Ak)x] cos ;(Aw t — Ak x)
Since Aw and Ak are small compared with w and k respectively,

2w+ Aw = 2w

2k + Ak = 2k
and so

Aw Ak
Beats y = 2A cos (wt — kx) cos (Tt — Tx)
Equation (3.10) represents a wave of angular frequency w and wave number k

that has superimposed upon it a modulation of angular frequency ;A and of wave
number ;Ak. The effect of the modulation is to produce successive wave groups.



The phase velocity v, is

hy = ymc*
2
Phase velocity v = % p = o (2:L1)
h
and the velocity v, of the wave groups is i ymc® h s i
P h ymu v
) Aw
Group velocity Y%= (3.12)

When w and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

_dm

Group velocity Ve = (3.13)
 do  de/dv
N 2arymc’ P — 2m _ 2mymv Ve ™ o dk/ dv
h A h
dor 2mmv
2mc? B 2mmu P h(l — v2/2)¥>
hV1 = v/ WVI-v'/e g, 2arm

dv h(l — v2/ 232



Example 3.3

An electron has a de Broglie wavelength of 2.00 pm = 2.00 X 10~ "* m. Find its kinetic energy
and the phase and group velocities of its de Broglie waves.

Solution

(a) The first step is to calculate pc for the electron, which is

he (4136 X 1077 eV - 5)(3.00 X 10% m/s) ;
pc e 13 == 62‘.] X ]_'O EV
A 200 X 107%m

= 620 keV

The rest energy of the electron is E; = 511 keV, so

KE = E — Eo = VE + (pc)* — Es = V(511 keV)* + (620 keV)? — 511 keV
= 803 keV — 511 keV = 202 keV

(b) The electron velocity can be found from

E= r v 0.771c He
l—Ulf[z
'UE:U:O.?TlC
to be
S Y : —.:fl (51“‘”)1—07?&
= —E 7 = S5 | — = .
Al E? V 803 keV



3.5 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

Electron gun

Qi
Electron
detector
llncident
beam
Scattered
heam

Nickel

Figure 3.6 The Davisson-Germer
experiment.

the intensity at any angle is proportional to the distance
of the curve at that angle from the point of scattering.

Incident beam

40V 44V 48V 60V 64V 68V

Results of the Davisson-Germer experiment, showing
how the number of scattered electrons varied with the
angle between the incoming beam and the crystal
surface. The Bragg planes of atoms in the crystal were
not parallel to the crystal surface, so the angles of
incidence and scattering relative to one family of these
planes were both 65°.
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Figure 2.20 X-ray scattering from a cubic crystal.



54-eV electrons

Single crystal
of nickel

o

Figure 3.8 The diffraction of the
de Broglie waves by the target is
responsible for the results of
Davisson and Germer.
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Figure 3.8 The diffraction of the
de Broglie waves by the target is
responsible for the results of
Davisson and Germer.

spacing of the planes in this -family, which can be measured by x-ray diffraction, is
0.091 nm. The Bragg equation for maxima in the diffraction pattern is

nA = 2d sin 0 (2.13)

Here d = 0.091 nm and # = 65°. For n = 1 the de Broglie wavelength A of the
diffracted electrons is

A =2dsin 8 = (2)(0.091 nm)(sin65°) = 0.165 nm

Now we use de Broglies formula A = h/ymv to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc” of 0.51 MeV, so we can let y = 1. Since

KE = tmv?

the electron momentum mv is

mv = V 2mKE
= \/(2}(9.1 X 1077 kg)(54 eV)(1.6 X 107" J/eV)
=40 X 107" kg - m/s

The electron wavelength is therefore

h 6.63 X 10°*] s -
A= = = 1.66 X 107" m = 0.166 nm

mv 4.0 X 107* kg - m/s

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer



3.6 PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

%/\/\ =4

¥, /-\/ A=L

¥, /—\ %=L
< L >

Wave functions of a
particle trapped in a
box L wide.

2L
A, = — n=1, 2,3,
T (mv}z B h?
. 2m 2mA\°
n’h?
E, = - n=1 2, 3,
m



We can draw three general conclusions:

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is A = h/mv, a speed of v = 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E = 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 X 107°%] - s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.



Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.
Find its permitted energies.

Solution

Here m = 9.1 X 1077 kgand L = 0.10 nm = 1.0 X 10~ '? m, so that the permitted electron
Energies are

(n?)(6.63 X 107 ]-9)?
En= —— - — ! ——— = 6.0 X 107 "®n* ]
(8)(9.1 X 107* kg)(1.0 X 107 m)

= 38n” eV

The minimum energy the electron can have is 38 eV, corresponding to n = 1. The sequence of
energy levels continues with E; = 152 eV, E5 = 342 eV, E4 = 608 eV, and so on (Fig. 3.11). If
such a box existed, the quantization of a trapped electrons energy would be a prominent feature
of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

700

600 n=4
500
% 400
=) -
E n=3
D 300
200
n=2
100
n=1
0

Figure 3.11 Energy levels of an
electron confined to a box
0.1 nm wide.



BT i35 (electron microscope )

Because the wavelengths of the fast electrons in an electron microscope are shorter than
those of the light waves in an optical microscope, the electron microscope can produce
sharp images at higher magnifications. The electron beam in an electron microscope is
focused by magnetic fields.

SRR ELIE Y 2y

U Electron source TR T B R (TEM)
Magnetic
. | . condensing lens
Object
il Magnetic

objective lens

Electron paths

Magnetic
projection

\ lens
¥
Image




In the case of a good microscope that uses visible light, the maximum useful
magnification is about 500.

Electron microscope has a great improvement on the 200-nm resolution of an optical
microscope, and magnifications of over 1,000,000 have been achieved.

In an electron microscope, current-carrying coils produce magnetic fields that act as
lenses to focus an electron beam on a specimen and then produce an enlarged image on
a fluorescent screen or photographic plate (figure). To prevent the beam from being
scattered and thereby blurring the image, a thin specimen is used and the entire system
is evacuated.
~__Highvoltage

~__—Electrongun

" Firstcondenser lens

———— Condenser aperture
Second condenser lens
~Condenser aperture

__ Specimen holderand air-lock
—— Objectivelenses and aperture







3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

A2 —>| & j—
— N WV —
—"|£1.x|<— |‘ Ax )|

Ax small Ax large
Ap large

Ap small

It is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

%

+
‘P(x)ZJ:g(k)coskrdk "'"“"d kf“‘“"" A A A,

Ax Ak =

r\.1|-—-
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Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is

also a Gaussian function.

Ax Ak =

h.-lli—'



] ] ()
Gaussian Function

1.0
]((X) - #E_{X—-‘JD:‘E/EJE
' o V2w
0.5
PX|.‘~€2 = J Lr(X) {ix
Xoto
Powo = | f00 dx = 0683 % :

Xp—O

The probability of finding a value of x is given by
the Gaussian function f(x). The mean value of x is
Xy, and the total width of the curve at half its
maximum value is 2.35, where is the standard
deviation of the distribution. The total probability
of finding a value of x within a standard deviation
of x, is equal to the shaded area and is 68.3%.
95.4% of the measurements fall within two
standard deviations of the mean value.
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Example 3.6

A measurement establishes the position of a proton with an accuracy of 1.00 X 10~"" m. Find
the uncertainty in the protons position 1.00 s later. Assume v << .

Solution

Let us call the uncertainty in the protons position Ax; at the time t = 0. The uncertainty in its
momentum at this time is therefore, from Eq. (3.22),

7
2AJCD

Ap =

Since v << ¢, the momentum uncertainty is Ap = A(mv) = m Av and the uncertainty in the
proton’s velocity is

Ap} %

m  2m Axg

Av =

The distance x the proton covers in the time t cannot be known more accurately than

7t
2m Axg

Hence Ax is inversely proportional to Axy: the more we know about the proton’s position at

Ax =tAv=

t = 0, the less we know about its later position at t > 0. The value of Ax at t = 1.00 s is

o (1.054 X 1077 J - 5)(1.00 s)
— (@1.672 X 107 kg)(1.00 X 107! m)

>315X 10°m

This is 3.15 km—mnearly 2 mi! What has happened is that the original wave group has spread
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Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.
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Figure 3.17 An electron cannot be observed without changing its momentum.

This indeterminacy is inherent in the nature of a moving body. 1. They show it is
impossible to imagine a way around the uncertainty principle; 2, they present a view of
the principle that can be appreciated in a more familiar context than that of wave groups.



3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Example 3.7

A typical atomic nucleus is about 5.0 X 107" m in radius. Use the uncertainty principle to
place a lower limit on the energy an electron must have if it is to be part of a nucleus.

Letting Ax = 5.0 X 107> m we have

% 1.054 X 10 ]+ 5
Ap= — = : = 1.1 X 107 kg - m/
P=5Ax = @)5.0 x 1075 m) R

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at
least comparable in magnitude. An electron with such a momentum has a kinetic energy KE
many times greater than its rest energy mc*. From Eq. (1.24) we see that we can let KE = pc
here to a sufficient degree of accuracy. Therefore

KE = pc = (1.1 X 107*° kg - m/s)(3.0 X 10° m/s) = 3.3 X 107"'%]

Since 1 eV = 1.6 X 1079 ], the kinetic energy of an electron must exceed 20 MeV if it is to
be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never
have more than a small fraction of this energy, from which we conclude that nuclei cannot con-
tain electrons. The electron an unstable nucleus may emit comes into being at the moment the
nucleus decays (see Secs. 11.3 and 12.5).



Example 3.8

A hydrogen atom is 5.3 X 107" m in radius. Use the uncertainty principle to estimate the min-
imum energy an electron can have in this atom.

Solution

Here we find that with Ax = 5.3 X 107! m.

7 )
Ap= — =99 X 107*° ke - m/
P= JAx .

An electron whose momentum is of this order of magnitude behaves like a classical particle, and
its kinetic energy is

2 o
KE — r - (9.9 X 107%° kg - m/s)?
2m (2)(9.1 X 107! kg)

=54 % 10177

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom
is actually 13.6 eV.
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Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,
as described in Chap. 4. The average period that elapses between the excitation of an atom and
the time it radiates is 1.0 X 107° s. Find the inherent uncertainty in the frequency of the

photon.
Solution

The photon energy is uncertain by the amount

7 1.054 % 1072 ] «s 5
ABE—— & - =53 X 1)
2At 2(1.0 X 1078 s)

The corresponding uncertainty in the frequency of light is
AE
Av=7:zax1$Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the
radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not
appear with the precise frequency ». For a photon whose frequency is, say, 5.0 X 10'* Hz,
Av/v = 1.6 X 107", In practice, other phenomena such as the doppler effect contribute more
than this to the broadening of spectral lines.
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Sample Problem m

What 1s the de Broglie wavelength of an electron with a
kineticenergy of 120 eV?

p = \2mK

= V(2)(9.11 X 1073 ke)(120 eV)(1.60 X 10~ J/eV)
= 591 X 10 2* kg-m/s.

6.63 X 107 J-s
5.91 X 10~* kg-m/s

=112 X 107 m = 112 pm.




*43 In an old-fashioned television set, electrons are acceler-
ated through a potential difference of 25.0 kV. What 1s the
de Broglie wavelength of such electrons? (Relativity 1s not

needed.) SSM

B h B h h

A=—= = ,
p \/2mEK .JZI’HEEV

~ h 6.626x10™] s
J2meV  [2(9.109x10kg)(1.602x10™° C)(25.0x10° V)

=7.75x10"* m=7.75pm.

A




°e45 What 1s the wavelength of (a) a photon with energy
1.00 eV, (b) an electron with energy 1.00 eV, (c¢) a photon of
energy 1.00 GeV, and (d) an electron with energy 1.00 GeV?

45. (a) The momentum of the photon i1s given by p = E/c. where E i1s its energy. Its
wavelength is

A _h _he 1240eV-nm
p E 1.00eV

=1240nm.

(b) The momentum of the electron 1s given by p =+/2mK. where X is 1ts Kinetic energy
and 1 1s 1ts mass. Its wavelength 1s

A= h_ h
P ~2mK '
If K 1s given in electron volts, then
6.626x107* T -5 1.226x10” m-eV"”* 1.226nm-eV"”
}\‘ —_— —_— = —_— = k
J2(9.109x10 kg)(1.602x10™* J/eV)K JK JE

For K=1.00 eV . we have

- 1.226nm-eV"?

4/1.00eV

=123 nm




(c¢) For the photon.

he 1240eV-nm

e \7:1.24>{10"‘51u11:1.24 fin.
00x10°eV

(d) Relativity theory must be used to calculate the wavelength for the electron. According
to Eq. 38-51, the momentum p and kinetic energy K are related by

D  f
(pe)’ =K+ 2Kmc".
Thus,

pe=vK>+2Kmc> =\/(1.00><109 eV) +2(1.00x10°eV)(0.511x10%€V )
=1.00x10’eV.

The wavelength 1s

_h _he 1240eV-nm
p pc 1.00x10°eV

A =1.24x10°nm=1.24 fm.



ee47 Singly charged sodium 1ons are accelerated through a
potential difference of 300 V. (a) What 1s the momentum
acquired by such an 1on? (b) What 1s its de Broglie wave-
length? ssm www

47. (a) The kinetic energy acquired is K = ¢V, where ¢ 1s the charge on an ion and 7 is
the accelerating potential. Thus

K=(1.60% 1077 C)(300 V) =480 x 107" J.
The mass of a single sodium atom is. from Appendix F,
m = (22.9898 g/mol)/(6.02 x 10*° atom/mol) =3.819 x 107 g=3.819 x 10~° kg.

Thus, the momentum of an 1on 1s

-

p=2mK =[2(3819x10™ kg)(480x10""J) = 19110~ kg-m/s.

(b) The de Broglie wavelength 1s

h 6.63x107"T-s

= = =3.46x10"" m.
p 1.91x10~kg-m/s

A




*249 The wavelength of the yellow spectral emission line of
sodium 1s 590 nm. At what kinetic energy would an electron
have that wavelength as its de Broglie wavelength? SSM

49_1If KX 1s given 1 electron volts, then

= E — h . 6.626x107* T s J 1.226%10° m- e\f"l'@
p N2mK  \[2(9.109x10 7 kg)(1.602x10 " J/eV)K IR
~ 1.226nm-eV*?
VK

where K 1s the kinetic energy. Thus,

' iy 5 xr2 )
X 1226 nm- eV N 1.226 mn- eV —432% 105 eV
A 590 nm




Certain ocean waves travel with a phase velocity v, =

Jgh/2m , where g is the acceleration due to gravity. What
1s the group velocity of a “wave packet” of these waves?

With k£ =2n /A, we can write the phase velocity as a
function of & as

Vbhase = V g/k

But with v ... = o/k, we have w/k = \/g/k,s0o 0 = |/ gk
and Eq. 4.28 gives

_do d L jg 1T [gr
Veroup = "1 _dk‘/g_k_z\/;_z\/m

Note that the group speed of the wave packet increases as
the wavelength increases.




Estimate the kinetic energy of an electron confined
within a nucleus of size 1.0 X 10~ m by using the un-

certainty principle.

Solution Taking Ax to be the halfswidth of the confine-

ment length in the equation Ap, = 3 Ayt e have
X
6.58 X 107 1%eV-s  3.00 X 108m/s
Ap, = 14 X
1.0 X 107 m ¢

or

Ap, = 2.0 X 107%

This means that measurements of the component of
momentum of electrons trapped inside a nucleus
would range from less than —20 MeV/¢ to greater than
+20 MeV/ ¢ and that some electrons would have momen-
tum at least as large as 20 MeV/¢. Because this appears to
be a large momentum, to be safe we calculate the elec-
tron’s energy relativistically.

E2 = j)262 + (m,3€2)2
= (20 MeV/)%¢2 + (0.511 MeV)?
= 400(MeV)?

or
E =20 MeV
Finally, the kinetic energy of an intranuclear electron is
K=FE— mec®=19.5 MeV

Since electrons emitted in radioactive decay of the nucleus
(beta decay) have energies much less than 19.5 MeV
(about 1 MeV or less) and it is known that no other mech-
anism could carry off an intranuclear electron’s energy
during the decay process, we conclude that electrons ob-
served in beta decay do not come from within the nucleus
but are actually created at the instant of decay.



Although an excited atom can radiate at any time from
t = 0 to { = %, the average time after excitation at which
a group of atoms radiates is called the lifetime, 7, of
a particular excited state. (a) If 7=1.0X10"%s (a
typical value), use the uncertainty principle to compute
the line width Af of light emitted by the decay of this

excited state.

(b) It the wavelength of the spectral line involved in this
process is 500 nm, find the fractional broadening Af/f.

Solution We use AE At = fi/2, where AE is the uncer-
tainty in energy of the excited state, and At = 1.0 X 1078
is the average time available to measure the excited state.
Thus,

AE = #w/2 At = #/(2.0 X 1078 s)

Since AE is also the uncertainty in energy of a photon
emitted when the excited state decays, and AE = hAf for
a photon,

h Af=1/(2.0 X 107%s)
or

1

Af = =80 X 10°H
= A< 10-Fs ?

Solution First, we find the center frequency of this line

as follows:
C 3.0 X 1085m/s
=—= =6.0 X 10 H
S T 500 X 109 m 8
Hence,
A 8.0 X 10°H
J _ L _13%x10°8

fo 6.0 X 10" Hz

This narrow natural line width can be seen with a sen-
sitive interferometer. Usually, however, temperature
and pressure eftects overshadow the natural line width
and broaden the line through mechanisms associated
with the Doppler effect and atomic collisions.



An electron is trapped in a one-dimensional region of length
1.00 x 10719 m (a typical atomic diameter). (a¢) Find the
energies of the ground state and first two excited states.
(b) How much energy must be supplied to excite the elec-
tron from the ground state to the second excited state?

(a¢) The basic quantity of energy needed for this
calculation 1s

R (he)?
 8mL?2  8mc2l2?
(1240 eV - nm)*

= 8(511,000eV)(0.100 nm)>

Eo

= 37.6eV

With £, = n*E,, we can find the energy of the states:
n=2: E,=4E,=150.4eV
n=3: E3=9E;=3384eV

(b) The energy difference between the ground state and
the second excited state is

AE =FE, —F, =3384¢eV —37.6eV =3008¢eV






5-17. Two harmonic waves travel simultaneously along a long wire. Their wave functions are
¥, = 0.002 cos (8.0x — 400f) and y, = 0.002 cos (7.6x — 380¢), where y and x are in meters and
t in seconds. (@) Write the wave function for the resultant wave in the form of Equation 5-15.
() What is the phase velocity of the resultant wave? (c¢) What is the group velocity?
(d) Calculate the range Ax between successive zeros of the group and relate it to Ak.

5-1.

5-5.

5-9.

5-13.
5-17.
5-21.
5-25.
5-29.
5-33.
5-37.
5-41.
5-45.
5-49.
5-53.

(a)2.1 X 107# m (b) 2.1 X 107*' m/y

0.0276 nm

(a) 0445 fm (b)6.18 X 1073 fm

A=0523mm; E =30 X 10%eV

(a) See SSM (b)50m/s (¢)50m/s (d)Ax = 57w m; Ak = 04 m™!
32 X 1075s

(a) Adx (b)0.61Adx (c)0.14A4dx (d)x=0

1.99 X 107 eV

(a) 5.3 X 107 (b)1.32 X 1077 eV

See SSM

(a) See SSM (b) See SSM

(a) 1840 MeV (b)2.02fm (c) 1.22fm (d) 0.76 fm

(a) 0243 nm (b)0.511 MeV (c¢)0.511 MeV/c (d)2.43 X 1073 nm
12 X 1076eV, 1.2eV



5-25. The wave function describing a state of an electron confined to move along the x axis is

given at time zero by
P(x, 0) = Ae ¥/

Find the probability of finding the electron in a region dx centered at (a) x = 0, (b) x = o, and
(c) x = 2o. (d) Where is the electron most likely to be found?

51. (a)2.1 X107%m (b)2.1 X 1072 m/y

5-5. 0.0276 nm

5-9. (a) 0.445fm (b)6.18 X 1073 fm

5-13. A=0523mm; E = 3.0 X 10%eV

5-17. (a)See SSM (b)50 m/s (c)50m/s (d)Ax = 5w m; Ak = 0.4 m™
5:-21.. 32 X 197§

5-25. (a) Adx (b)061A%2dx (c)0.14Adx (d)x=0

5-29. 199 X 107 eV

5-33. (@353 X 107Y (132X 1077eV

5-37. See SSM

5-41. (a) See SSM (b) See SSM

5-45. (a)1840MeV (b)202fm (c)1.22fm (d)0.76 fm

5-49. (a)0.243nm (b)0.511 MeV (c)0.511 MeV/c (d)2.43 X 107 nm
5-53. 12X 10%eV,1.2eV



5-29. 222Rn decays by the emission of an « particle with a lifetime of 3.823 days. The kinetic
energy of the o particle is measured to be 5.490 MeV. What is the uncertainty in this energy?
Describe in one sentence how the finite lifetime of the excited state of the radon nucleus trans-
lates into an energy uncertainty for the emitted a particle.

5-1.
5-5.
5-9.

5-13.
5-17.
5-21.
5-25.
5-29.
5-33.
5-37.

(@)2.1 X 100¥ m (b)2.1 X 10 %' m/y

0.0276 nm

(a)0.445fm (b)6.18 X 102 fm

A=0523mm; E =3.0X 1073 eV

(a) See SSM  (b) 50 m/s (c)50m/s (d)Ax = 5w m; Ak = 04 m™
3.2 X 1072

(a) A2dx (b)0.61Adx (c)0.14A%dx (d)x =0

1.99 X 1072 eV
()53 X 1071 (b)1.32 X 1077 eV
See SSM

5-33. The decay of excited states in atoms and nuclei often leave the system in another, albeit
lower-energy, excited state. (a) One example is the decay between two excited states of the
nucleus of “*Ti. The upper state has a lifetime of 1.4 ps, the lower state 3.0 ps. What is the frac-
tional uncertainty AE/E in the energy of 1.3117-MeV gamma rays connecting the two states?
(a) Another example is the H  line of the hydrogen Balmer series. In this case the lifetime of
both states is about the same, 107® s. What is the uncertainty in the energy of the H_ photon?



5-49. An electron and a positron are moving toward each other with equal speeds of
3 X 10° m/s. The two particles annihilate each other and produce two photons of equal energy.
(@) What were the de Broglie wavelengths of the electron and positron? Find the (/) energy,
(¢) momentum. and () wavelength of each photon.

5-5.
5-9.

5-13.
5-17.
5-21.
5-25.
5-29,
5-33.
5-37.
5-41.
5-45.
5-49.
5-53.

(@)2.1 X 100¥ m (b)2.1 X 102 m/y

0.0276 nm

(a) 0.445fm (b)6.18 X 1073 fm

A=0523nm; E =30 X 107 eV

(a) See SSM  (b) 50 m/s (c)50m/s (d) Ax = Swm; Ak = 0.4 m™!
32 X 107°s

(a) Adx (b)0.61Adx (c)0.14A%dx (d)x=0

1.99 X 107 eV

()53 X 107° (b)1.32 X 1077 eV

See SSM

(a) See SSM  (b) See SSM

(a) 1840 MeV (b)2.02fm (¢) 1.22fm (d) 0.76 fm

(a) 0.243 nm (b) 0.511 MeV (c) 0.511 MeV/c (d)2.43 X 1073 nm
1.2 X 1075eV, 1.2 eV



