°ª´µ©w«ß


°ª´µ©w«ß¡]Gauss' law¡^ªí©ú¦b³¬¦X¦±­±¤ºªº¹q²ü¤À§G»P²£¥Íªº¹q³õ¤§¶¡ªºÃö«Y¡G ¨ä©w©Ê´y­z¬°¡G¬ï¶V¥X¥ô·N³¬¦X¦±­±ªº²b¹q³q¶q\(\Phi_E\)µ¥©ó¸Ó³¬¦X¦±­±¤ºªº²b¹q²ü(\(Q\))°£¥H¹q®e²v(\(\epsilon_0\))¡G \[\Phi_E=\dfrac{Q_{\text{enc}}}{\epsilon_0}.\] ¸Ó³¬¦X¦±­±ºÙ¬°°ª´µ¦±­±¡A\(Q_{enc}\)¬O«Ê³¬¦±­±(°ª´µ­±)¤ºªº¹q²üÁ`¶q¡C¦Ò¼{¹q³q¶qªº©w¸q§Ú­Ì¥i¥H±N°ª´µ©w«ß¼g¦¨¤U­±ªº¼Æ¾Ç§Î¦¡¡G \[\Phi_E=\oint_S \vec{E} \cdot \mathrm{d}\mathbf{S} = \dfrac{Q_{\text{enc}}}{\epsilon_0}.\] \(\oint_S\)¥Nªí¶¤«Ê³¬ªº¦±­±(\(S\))ªº­±¿n¤À¡C

¦pªG¹q³õ¬°¤@«D§¡¤Ã¹q³õ¡A«h³q±`·|±N¦¹¤@¸û¤j­±¿nªº¹q³q¶q¤À³Î¡A§ï¨ú¤@¤p¶ô­±¿n \( d\mathbf{S}\) ¤Wªº¹q³q¶q \(d\Phi_{E}\) \[ d\Phi_{E}=\mathbf{E} \cdot \mathrm{d}\mathbf{S}\] ¡]¹q³õ \(\mathbf {E}\)­¼¥H««ª½©ó©Ò¿ï­±¿nªí­±ªº¤À¶q¡^¡C¦]¦¹¡Aªí­± \(S\) ¤Wªº¹q³q¶q¥i¥Ñªí­±¿n¤À±o¨ì¡G
\(\Phi_{E}=\oint_{S} \mathrm{d}\Phi= \oint_{S} \mathbf{E} \cdot \mathrm{d} \mathbf{S}\)
¨ä¤¤ \(\mathbf{E}\)¬O¹q³õ¡A\(\mathrm{d} \mathbf{S}\)¬O³¬¦Xªí­±\(S\)¤Wªº·L¤p­±¿n¡A¨ä¤è¦V©w¸q¬°ªí­±ªk½u´Â¥~¡C
®Ú¾Ú°ª´µ©w«ß¡A³q¹L¥ô¤@«Ê³¬¦±­±¡]°ª´µ­±¡^ªº²b¹q³q¶q(\(\Phi_{E}\))¡A¥²»P¸Ó«Ê³¬¦±­±¤º©Ò³ò¤§²b¹q²ü¶q(\( Q_{\rm{enc}}\))¦¨¥¿¤ñ¡C ¦Ó¦b¯uªÅ¤¤¡A¦¹¤ñ¨Ò±`¼Æ¬°¤@©w­È\( 1/\varepsilon_{0}\)¡C¨ä¼Æ¾Ç¦¡¬° :
\(\Phi_{E}=\oint_{\scriptstyle{S}} \mathbf{E} \cdot d\mathbf{S} =\frac{Q_{\rm{enc}}}{\varepsilon_{0}} \)
¨ä¤¤ \(\mathbf{E}\)¬O¹q³õ¡B \(S\) ¬O¥ô¤@«Ê³¬¦±­±¡B \( Q_{\rm {enc}}\) ¬O¦±­± \(S\) ¤ºªºÁ`²b¹q²ü¡C\(\varepsilon_{0}\)¬O¤¶¹q±`¼Æ¡]¬°¤@³q¥Î±`¼Æ¡A¤]ºÙ¬°¯uªÅ¤¤¹q®e²v©Î¯uªÅ¤¶¹q±`¼Æ ¡^¡C\( \varepsilon _{0}\approx 8.85...\times 10^{-12}\) (F/m) ¦¹¤@Ãö«Y¦¡¥H¨ä¿n¤À§Î¦¡³QºÙ¬°¹q³õ°ª´µ©w«ß¡A¬O¥|­Ó°¨§J¤h«Â¤èµ{¦¡¤§¤@¡C¹q³q¶qªº³æ¦ì¬°¥ñ¯S¦Ì¡]V¡Pm¡^¡C

¦¹¤èµ{¦¡¬O°ª´µ¦b1835¦~´£¥Xªº¡A¦ýª½¨ì1867¦~¤~µo¥¬¡C¦]¬°¼Æ¾Ç¤Wªº¬Û¦ü©Ê¡A°ª´µ©w«ß¤]¥i¥HÀ³¥Î©ó¨ä¥¦¥Ñ¤Ï¥­¤è©w«ß¨M©wªºª«²z¶q¡A¨Ò¦p­«¤O©ÎªÌ¿ç·Ó«×¡C ¦b§Ú­Ì¶}©l¶i¦æ°ª´µ©w«ßªºÀ³¥Î¤§«e¡A§Ú­Ì«Ü§Ö¦a±N¹q³q¶qªº¤º®e¦A½Æ²ß¤@¹M¡C §Ú­ÌµÛ­«¦b¨â­Ó±¡ªp¡G¤@­Ó¬O¥­­±ªº¹q³q¶q¡A¥t¥~¤@­Ó¬O²y­±ªº¹q³q¶q¡C·íµM§Ú­Ì¤]¥i¥H¦Ò¼{¶ê¬W­±ªº¹q³q¶q¡C


­pºâÂI¹q²ü¹ï¤@¥­­±ªº¹q³q¶q

\(-R \le x \le R; \\ -R \le z \le R \\ L=2R; R=1 \\ A=L^2=4; \,k=1\)
ÂI¹q²ü\(q=1, \vec{r}_q=(0,L/2,0)\)ªº¹q³õ¡G
\(\vec{E}=k q_1 / |\vec{r}-\vec{r_q}|^3 (\vec{r}-\vec{r_q})\)
xz-¥­­±ªºªk½u¡G
\(\hat{n}=(0,1,0)\)
¹q³q¶q\(\Phi_E\):
\(\Phi_E=\int_S \vec{E} \cdot \mathrm{d}\vec{S} \\ =\int_{-R}^{R} \int_{-R}^{R} \vec{E} \cdot \hat{n} \,dx dz \\ =\dfrac{4 \pi}{6}\simeq 2.0944\)



¤@­ÓÂI¹q²ü¹ï¨â­Ó¥­­±ªº¹q³q¶q

¹q³q¶q\(\Phi_E\):
\(\Phi_E=\int_{S_1} \vec{E} \cdot \mathrm{d}\vec{S} + \int_{S_2} \vec{E} \cdot \mathrm{d}\vec{S} \\ =2 \times \int_{-R}^{R} \int_{-R}^{R} \vec{E} \cdot \hat{n} \,dx dz \\ =2 \times \dfrac{4 \pi}{6}\simeq 4.18\)
¦]¦¹§Ú­Ì¥i¥H§Q¥Î¹ïºÙ©Ê¦Ò¼{¡A¦pªG¦³¤@­ÓÃäªø\(L=2R\)ªº¥ß¤èÅé¡A·í¤¤¦³¤@­ÓÂI¹q²ü(\(q=1\))©ñ¸m¦b¥ß¤èÅ骺¤¤¤ß¦ì¸m¡A¨º»ò¥ß¤èÅ骺¤»­Ó­±ªº¹q³q¶q¤§Á`©M¥²µM¬°\(\Phi_E=6 \times \dfrac{4\pi k_e q}{6}=4 \pi k_e q=\dfrac{q}{\varepsilon_0}\)¡A³o´N¬O°ª´µ©w«ßªºµ²ªG¡C
glowscript:¤@­ÓÂI¹q²ü¹ï¨â­Ó¥­­±ªº¹q³q¶q(PS-EFlux-06.py)





²y®y¼Ð

²y®y¼Ð\(\rightarrow\)ª½¨¤§¤¼Ð¨tªºÂà´«¤½¦¡¡G
\(x=r \cos \phi \sin \theta; \\ y=r \cos \theta \\ z=r \cos \theta;\)
ª½¨¤§¤¼Ð¨t\(\rightarrow\)²y®y¼ÐªºÂà´«¤½¦¡¡G
\(r=\sqrt{x^2+y^2+z^2} \\ \theta=\cos^{-1} \dfrac{\sqrt{x^2+y^2}}{\sqrt{x^2+y^2+z^2}} \\ \phi=\tan^{-1} \dfrac{y}{x} \)
²y®y¼Ðªº­±¿n³æ¤¸: \(dA=r^2 \sin(\theta) \mathrm{d}\theta \mathrm{d}\phi \)
²y®y¼ÐªºÅé¿n³æ¤¸: \(dV=r^2 \sin(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\phi \)





²y­±ªº­±¿n»P²yªºÅé¿n

¹ï¤@­Ó¥b®|¬°Rªº²y¡A²y­±­±¿n¡G
\(A=\int_0^{\pi} \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi \, R^2 \sin \theta \\ =\int_0^{\pi} \sin \theta \mathrm{d}\theta \int_0^{2\pi} R^2 \mathrm{d}\phi= (2)(2\pi R^2) \\ =4\pi R^2\)
²yªºÅé¿n¡G
\(V=\int_0^R \mathrm{d}r \int_0^{\pi} \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi \, r^2 \sin \theta \\ = \int_0^R r^2 \mathrm{d}r \int_0^{\pi} \sin \theta \mathrm{d}\theta \int_0^{2\pi} R^2 \mathrm{d}\phi \\ = (\dfrac{1}{3} R^3 )(2)(2\pi) \\ =\dfrac{4}{3}\pi R^3\)


glowscript:²y­±ªº­±¿n»P²yªºÅé¿n(PS-EFlux-08.py)





¤@­ÓÂI¹q²ü¹ï¥b²y­±ªº¹q³q¶q

¦b³o­Ó­pºâ·í¤¤§Ú­Ì¿ï¨úªº¦±­±¬O¤@­Ó¥b®|¬°Rªº²y­±¡A®y¼Ðªº­ìÂI´N³]¦b²y¤ß¤W¡C¦]¬°§Ú­Ì§â­ìÂI³]¦b²yªº²y¤ß¡A¦]¦¹¨C¤@­Ó²y­±¤WªºÂIªºªk¦V¶q´N¬O¦ì¸m¦V¶q¡C§Ú­Ì¥u­n§Q¥Î¨ç¼Æ°Æµ{¦¡(EF_points)­pºâ¥X³o­ÓÂIªº¹q³õ¡G ÂI¹q²üqªº®y¼Ð\(\vec{r'}\), ±ý­pºâªº¹q³õ¦ì¸m\(\vec{r}\), ¹q³õ(\(\vec{E}\))¦b¸m\(\vec{r}\)ªº¦V¶q¡G \[ \vec{E}(\vec{r})=\frac{kq}{r^3}\vec{r} \] ¦A±N\(\vec{E}\)»P¦ì¸m¦V¶q\(\vec{r}\)¨ú¤º¿n¡A«Ü§Ö¥i¥H§â­±¿n¤Àºâ¥X¨Ó¡C¤TºûªÅ¶¡ùØ¡AÁÙ¦³¨ä¥Lªº®y¼Ð¨t¡A¨Ò¦p¶ê¬W®y¼Ð«Y´N¬O¨ä¤¤¤@ºØ·í¡C§Ú­Ì¦Ò¼{§Ú­Ìªº¹q²ü§e½u©Ê¤À§G®É¡A¶ê¬W®y¼Ð«Y´N¬O¤@­Ó¤ñ¸û¦nªº¿ï¾Ü¡A¦]¬°³o­Ó®É­Ôªº°ª´µ­±À³¸Ó·|¬O¶ê¬WÅ骺ªí­±¤ñ¸û¯à°÷²Å¦X¹q³õ°ÝÃDªº¹ïºÙ©Ê¡Cµ{¦¡¤¤ dA=R*dt*R*sin(T)*df´N¬O²y®y¼Ð¨tªº­±¿n·L¶q¤¸¯À¡G\(dA=R^2 \sin(\theta) d \theta d \phi\)¡C
glowscript:¤@­ÓÂI¹q²ü¹ï¥b²y­±ªº¹q³q¶q(PS-EFlux-09.py)








«Ê³¬ªº¦±­±--°ª´µ­±--°ª´µ©w«ß

¤@­ÓÂI¹q²ü¹ï¥ß¤èÅé­±ªº¹q³q¶q

¦b«e­±ªº°Q½×¤¤§Ú­Ì¤w¸g±o¨ì1­ÓÂI¹q²ü¦pªG©ñ¦b¥ß¤èÅ骺¥¿¤¤¥¡¡A¹q³õ¹ï6­Ó­±ªº¹q³q¶qªºÁ`©M·|µ¥©ó¹q²üªº¹q¶q°£¥H\(\varepsilon_0\)¡A³o´N¬O°ª´µ©w«ß¡C¦b¤U­±ªºµ{¦¡·í¤¤§Ú­Ì±N¹q²üªº¦ì¸m²¾¶}Åé¤ß¡A¦V¤U¤è°¾²¾¡C§Q¥Îvpythonµ{¦¡§Ú­Ì¥i¥H­pºâ¦b³o­Ó±¡ªp¤U¡A³q¹L«Ê³¬¦±­±ªº¹q³q¶qÁ`©M¡C¼Æ­È­pºâªºµ²ªGÅã¥ÜÁ`©M¤£ÅÜ¡A¤´µM¬O°ª´µ©w«ß»¡µ¹¥Xªºµ²ªG\(\Phi_E=\dfrac{Q_{\mathrm{enc}}}{\varepsilon_0}\)¡C§Ú­Ìª¾¹D¦pªG¹q²ü¦V¤U°¾²¾¡A±N·|¦]¬°¹q²ü¸û¬°¾aªñ©³­±¡A³q¹L©³­±ªº¹q³õ±j«×¼W¥[¡A©³­±ªº¹q³q¶q±N·|¼W¥[¡F¬Û¹ïªº³»­±ªº¹q³q¶q±N·|´î¤Ö¡A¦b³o¼Wªø»P®øªø¤§¶¡¡A¹q³q¶qªºÁ`©Mºû«ù¤£ÅÜ¡A´N¬O°ª´µ©w«ßªººë¯«¡C
GlowScript 3.2 VPython

def EF_point(q,rq,r):
    ke=1.; rrq=r-rq
    E=ke*q*rrq/mag(rrq)**3
    return E

L=4; NL=10; dx=L/NL; dz=L/NL; da=dx*dz
q1=1.; rq1=vec(0,L/4,0.)
scene=canvas(width=600, height=500, center=vec(0.5,L/4,0))
X=arrow(pos=vec(0,0,0),axis=vec(6,0,0),shaftwidth=0.02,headwidth=0.04,color=vec(1,0,0))
Y=arrow(pos=vec(0,0,0),axis=vec(0,6,0),shaftwidth=0.02,headwidth=0.04,color=vec(0,1,0))
Z=arrow(pos=vec(0,0,0),axis=vec(0,0,6),shaftwidth=0.02,headwidth=0.04,color=vec(0,0,1))
Q1=sphere(pos=rq1,radius=0.1,color=vec(1,0,0))
Gauss=box(pos=vec(0,L/2,0),size=vec(L,L,L),color=vec(1,1,0),opacity=0.2)
dx=L/NL; dz=L/NL; dy=L/NL; da=dx*dz; 
Tflux=0
eflux=0; n=vec(0,-1,0)
for i in range(NL):
    x=-L/2+dx*(i+0.5)
    for j in range(NL):
        z=-L/2+dz*(j+0.5)
        r=vec(x,0,z)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_1=',eflux,Tflux)

eflux=0; n=vec(0,1,0)
for i in range(NL):
    x=-L/2+dx*(i+0.5)
    for j in range(NL):
        z=-L/2+dz*(j+0.5)
        r=vec(x,L,z)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_2=',eflux,Tflux)

eflux=0; n=vec(1,0,0)
for i in range(NL):
    y=0+dy*(i+0.5)
    for j in range(NL):
        z=-L/2+dz*(j+0.5)
        r=vec(L/2,y,z)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_3=',eflux,Tflux)

eflux=0; n=vec(-1,0,0)
for i in range(NL):
    y=0+dy*(i+0.5)
    for j in range(NL):
        z=-L/2+dz*(j+0.5)
        r=vec(-L/2,y,z)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_4=',eflux,Tflux)

eflux=0; n=vec(0,0,1)
for i in range(NL):
    x=-L/2+dx*(i+0.5)
    for j in range(NL):
        y=0+dy*(j+0.5)
        r=vec(x,y,L/2)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_5=',eflux,Tflux)

eflux=0; n=vec(0,0,-1)
for i in range(NL):
    x=-L/2+dx*(i+0.5)
    for j in range(NL):
        y=0+dy*(j+0.5)
        r=vec(x,y,-L/2)
        E=EF_point(q1,rq1,r)
        Eda=dot(E,n)*da
        eflux+=Eda
Tflux+=eflux
print('Flux_6=',eflux,Tflux)
print('Tflux=',Tflux,'  Gauss-Law:',4*pi*q1)

glowscript:¤@­ÓÂI¹q²ü¹ï¥ß¤èÅé­±ªº¹q³q¶q(PS-Gauss-01.py)


q1= 1.5  rq1= < 1.3, 0.3, 0.3 >  R= 1
N= 8   A= 12.6475  ( 12.5664 ) // FLUX= -0.266703
N= 16   A= 12.5866  ( 12.5664 ) // FLUX= -0.0726721
N= 32   A= 12.5714  ( 12.5664 ) // FLUX= 1.84141e-3
N= 64   A= 12.5676  ( 12.5664 ) // FLUX= 3.84025e-4 
N= 128   A= 12.5667  ( 12.5664 ) // FLUX= 9.59969e-5



¤@­ÓÂI¹q²ü¹ï¥ß¤èÅé­±ªº¹q³q¶q¡A¹q²ü¦b¥~

­Y¬OÂI¹q²ü¦b¥ß¤èÅ骺¥~°¼¡A\(Q_{\mathrm{enc}}=0\)¡A®Ú¾Ú°ª´µ©w«ß¡A°ª´µ­±ªº¹q³q¶q\(\Phi_E=0\)¡C

glowscript:¤@­ÓÂI¹q²ü¹ï¥ß¤èÅé­±ªº¹q³q¶q¡A¹q²ü¦b¥~(PS-Gauss-01B.py)

ÀHµÛ§Ú­Ì¤Á³Îªí­±ªº¿n¤À³æ¤¸¶V²Ó½o(N¶V¤j)¡A
¿n¤Àªºµ²ªG´N¶V±µªñ©ó°ª´µ©w«ß¡G\(Q_{\mathrm{enc}}=0\)
NL= 4   q1= 4  rq1= < 3.2, 2, 0 > -0.213604  
NL= 8   q1= 4  rq1= < 3.2, 2, 0 > -0.0660521 
NL= 16  q1= 4  rq1= < 3.2, 2, 0 > -0.0165127  
NL= 32  q1= 4  rq1= < 3.2, 2, 0 > -4.12771e-3





¤@­ÓÂI¹q²ü¹ï°ª´µ²y­±ªº¹q³q¶q

¦b³o­Ó­pºâ·í¤¤§Ú­Ì¿ï¨úªº¦±­±¬O¤@­Ó¥b®|¬°Rªº²y­±¡A®y¼Ðªº­ìÂI´N³]¦b²y¤ß¤W¡C¦]¬°§Ú­Ì§â­ìÂI³]¦b²yªº²y¤ß¡A¦]¦¹¨C¤@­Ó²y­±¤WªºÂIªºªk¦V¶q´N¬O¦ì¸m¦V¶q¡C§Ú­Ì¥u­n§Q¥Î¨ç¼Æ°Æµ{¦¡(EF_points)­pºâ¥X³o­ÓÂIªº¹q³õ¡G ÂI¹q²üqªº®y¼Ð\(\vec{r'}\), ±ý­pºâªº¹q³õ¦ì¸m\(\vec{r}\), ¹q³õ(\(\vec{E}\))¦b¸m\(\vec{r}\)ªº¦V¶q¡G \[ \vec{E}(\vec{r})=\frac{kq}{r^3}\vec{r} \] ¦A±N\(\vec{E}\)»P¦ì¸m¦V¶q\(\vec{r}\)¨ú¤º¿n¡A«Ü§Ö¥i¥H§â­±¿n¤Àºâ¥X¨Ó¡C¤TºûªÅ¶¡ùØ¡AÁÙ¦³¨ä¥Lªº®y¼Ð¨t¡A¨Ò¦p¶ê¬W®y¼Ð«Y´N¬O¨ä¤¤¤@ºØ·í¡C§Ú­Ì¦Ò¼{§Ú­Ìªº¹q²ü§e½u©Ê¤À§G®É¡A¶ê¬W®y¼Ð«Y´N¬O¤@­Ó¤ñ¸û¦nªº¿ï¾Ü¡A¦]¬°³o­Ó®É­Ôªº°ª´µ­±À³¸Ó·|¬O¶ê¬WÅ骺ªí­±¤ñ¸û¯à°÷²Å¦X¹q³õ°ÝÃDªº¹ïºÙ©Ê¡Cµ{¦¡¤¤ dA=R*dt*R*sin(T)*df´N¬O²y®y¼Ð¨tªº­±¿n·L¶q¤¸¯À¡G\(dA=R^2 \sin(\theta) d \theta d \phi\)¡C
GlowScript 3.2 VPython
scene=canvas(width=800, height=600, center=vector(0.1,0.1,0), forward=vec(-0.3,-0.1,-1))
X=arrow(pos=vec(0,0,0),axis=vec(1.2,0,0),shaftwidth=0.02,headwidth=0.04,color=vec(1,0,0))
Y=arrow(pos=vec(0,0,0),axis=vec(0,1.2,0),shaftwidth=0.02,headwidth=0.04,color=vec(0,1,0))
Z=arrow(pos=vec(0,0,0),axis=vec(0,0,1.2),shaftwidth=0.02,headwidth=0.04,color=vec(0,0,1))
R=1; N=8; dt=pi/N; df=2*pi/N
q1=1.5; rq1=vec(0.3,0.3,0.3); ke=1
Q1=sphere(pos=rq1,radius=0.05,color=vec(1,0,0))
arrow(pos=vec(0,0,0),axis=rq1,shaftwidth=0.01,headwidth=0.02,color=vec(1,1,1))
A=0; FLUX=0
for i in range(N):
    t=dt*(i+0.5)
    for j in range(N):
        f=df*(j+0.5)
        x=R*sin(t)*cos(f); z=R*sin(t)*sin(f); y=R*cos(t)
        r=vec(x,y,z)
        n=hat(r)
        r1=vec(R*sin(t+0.01)*cos(f),R*cos(t+0.01),R*sin(t+0.01)*sin(f))
        tv=hat(r1-r)
        b=box(pos=r,size=vec(R*dt,0.01,R*sin(t)*df),axis=tv,up=r,color=vec(1,0.5,0.5),opacity=0.3)
        E=ke*q1/mag2(r-rq1)*hat(r-rq1)
        #arrow(pos=r,axis=b.up*0.2,shaftwidth=0.01,headwidth=0.02,color=vec(0,1,1))
        #arrow(pos=r,axis=E*0.2,shaftwidth=0.01,headwidth=0.02,color=vec(0.2,1,0.2))
        A+=R**2*sin(t)*dt*df
        FLUX+=dot(E,n)*R**2*sin(t)*dt*df
print('q1=',q1,' rq1=',rq1,' R=',R)
print('N=',N,'  A=',A,' (',4*pi*R**2,') // FLUX=',FLUX,' (Gauss-Law:',4*pi*q1,')')
glowscript:¤@­ÓÂI¹q²ü¹ï°ª´µ²y­±ªº¹q³q¶q(PS-Gauss-02.py)


ÀHµÛ§Ú­Ì¤Á³Î²y­±ªº¿n¤À³æ¤¸¶V²Ó½o(N¶V¤j)¡A¿n¤Àªºµ²ªG´N¶V±µªñ©ó°ª´µ©w«ßªº¼Æ­È18.8496¡C

q1= 1.5  rq1= < 0.3, 0.3, 0.3 >  R= 1
N= 8   A= 12.6475  ( 12.5664 ) // FLUX= 18.9097  (Gauss-Law: 18.8496 )
N= 16   A= 12.5866  ( 12.5664 ) // FLUX= 18.8764  (Gauss-Law: 18.8496 )
N= 32   A= 12.5714  ( 12.5664 ) // FLUX= 18.8563  (Gauss-Law: 18.8496 )
N= 64   A= 12.5676  ( 12.5664 ) // FLUX= 18.8512  (Gauss-Law: 18.8496 )
N= 128   A= 12.5667  ( 12.5664 ) // FLUX= 18.85  (Gauss-Law: 18.8496 )



PS-Gauss-Cobe-q-out.png

ÂI¹q²ü¦b°ª´µ²y­±¤§¥~

¦pªGÂI¹q²ü¦b°ª´µ²y­±¤§¥~¡A¨º»ò±µªñÂI¹q²ü³o¤@­±ªºªk½u»P¹q³õªº¤è¦V¤j¬ù¬O¤Ï¤è¦Vªº¡A¦]¦¹³o¤@³¡¤Àªº¹q³q¶q°^Äm¬O­tªº¡F¬Û¹ïªº»·Â÷ÂI¹q²üªº¥t¥~ªº²y­±ªºªk½u»P¹q³õ¦P¤è¦V¤j­P¦P¤è¦V¡A¦]¦¹¹q³q¶qªº°^Äm¬O¥¿ªº¡C®Ú¾Ú°ª´µ©w«ß¡A°ª´µ­±ªº¹q³q¶q¬O°ª´µ­±¤ºªº²b¹q²ü¡A¦b³o­Ó±¡ªp¤U²b¹q²ü¬°¹s¡A¦]¦¹°ª´µ­±ªº¹q³q¶qÀ³¸Ó¬O0¡C§Ú­Ì¥i¥H°õ¦æ¤W­±³o­Óµ{¦¡¡A§â¹q²ü©ñ¨ì°ª´µ­±ªº¥~­±¡Arq1=vec(1.3,0.3,0.3)¡A¨Ã¥BÆ[¹î¤£¦Pªº¤Á³Î¼Æ¥Ø(N)©Ò±oªºµ²ªG¡A¤£Ãøµo²{¹q³q¶q½T¹ê¬°¹s¡A¤]´NÅçÃÒ¤F°ª´µ©w«ßªº¥¿½T©Ê¡C
q1= 1.5  rq1= < 1.3, 0.3, 0.3 >  R= 1
N= 8   A= 12.6475  ( 12.5664 ) // FLUX= -0.266703
N= 16   A= 12.5866  ( 12.5664 ) // FLUX= -0.0726721
N= 32   A= 12.5714  ( 12.5664 ) // FLUX= 1.84141e-3
N= 64   A= 12.5676  ( 12.5664 ) // FLUX= 3.84025e-4 
N= 128   A= 12.5667  ( 12.5664 ) // FLUX= 9.59969e-5