\(-R \le x \le R; \\ -R \le z \le R \\ L=2R; R=1 \\ A=L^2=4; \,k=1\) ÂI¹q²ü\(q=1, \vec{r}_q=(0,L/2,0)\)ªº¹q³õ¡G \(\vec{E}=k q_1 / |\vec{r}-\vec{r_q}|^3 (\vec{r}-\vec{r_q})\) xz-¥±ªºªk½u¡G \(\hat{n}=(0,1,0)\) ¹q³q¶q\(\Phi_E\): \(\Phi_E=\int_S \vec{E} \cdot \mathrm{d}\vec{S} \\ =\int_{-R}^{R} \int_{-R}^{R} \vec{E} \cdot \hat{n} \,dx dz \\ =\dfrac{4 \pi}{6}\simeq 2.0944\) |
¹q³q¶q\(\Phi_E\): \(\Phi_E=\int_{S_1} \vec{E} \cdot \mathrm{d}\vec{S} + \int_{S_2} \vec{E} \cdot \mathrm{d}\vec{S} \\ =2 \times \int_{-R}^{R} \int_{-R}^{R} \vec{E} \cdot \hat{n} \,dx dz \\ =2 \times \dfrac{4 \pi}{6}\simeq 4.18\) ¦]¦¹§ÚÌ¥i¥H§Q¥Î¹ïºÙ©Ê¦Ò¼{¡A¦pªG¦³¤@ÓÃäªø\(L=2R\)ªº¥ß¤èÅé¡A·í¤¤¦³¤@ÓÂI¹q²ü(\(q=1\))©ñ¸m¦b¥ß¤èÅ骺¤¤¤ß¦ì¸m¡A¨º»ò¥ß¤èÅ骺¤»Ó±ªº¹q³q¶q¤§Á`©M¥²µM¬°\(\Phi_E=6 \times \dfrac{4\pi k_e q}{6}=4 \pi k_e q=\dfrac{q}{\varepsilon_0}\)¡A³o´N¬O°ª´µ©w«ßªºµ²ªG¡C |
²y®y¼Ð\(\rightarrow\)ª½¨¤§¤¼Ð¨tªºÂà´«¤½¦¡¡G \(x=r \cos \phi \sin \theta; \\ y=r \cos \theta \\ z=r \cos \theta;\) ª½¨¤§¤¼Ð¨t\(\rightarrow\)²y®y¼ÐªºÂà´«¤½¦¡¡G \(r=\sqrt{x^2+y^2+z^2} \\ \theta=\cos^{-1} \dfrac{\sqrt{x^2+y^2}}{\sqrt{x^2+y^2+z^2}} \\ \phi=\tan^{-1} \dfrac{y}{x} \) ²y®y¼Ðªº±¿n³æ¤¸: \(dA=r^2 \sin(\theta) \mathrm{d}\theta \mathrm{d}\phi \) ²y®y¼ÐªºÅé¿n³æ¤¸: \(dV=r^2 \sin(\theta) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\phi \) |
¹ï¤@Ó¥b®|¬°Rªº²y¡A²y±±¿n¡G \(A=\int_0^{\pi} \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi \, R^2 \sin \theta \\ =\int_0^{\pi} \sin \theta \mathrm{d}\theta \int_0^{2\pi} R^2 \mathrm{d}\phi= (2)(2\pi R^2) \\ =4\pi R^2\) ²yªºÅé¿n¡G \(V=\int_0^R \mathrm{d}r \int_0^{\pi} \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi \, r^2 \sin \theta \\ = \int_0^R r^2 \mathrm{d}r \int_0^{\pi} \sin \theta \mathrm{d}\theta \int_0^{2\pi} R^2 \mathrm{d}\phi \\ = (\dfrac{1}{3} R^3 )(2)(2\pi) \\ =\dfrac{4}{3}\pi R^3\) |
¦b³oÓpºâ·í¤¤§ÚÌ¿ï¨úªº¦±±¬O¤@Ó¥b®|¬°Rªº²y±¡A®y¼ÐªºìÂI´N³]¦b²y¤ß¤W¡C¦]¬°§Ú̧âìÂI³]¦b²yªº²y¤ß¡A¦]¦¹¨C¤@Ó²y±¤WªºÂIªºªk¦V¶q´N¬O¦ì¸m¦V¶q¡C§ÚÌ¥un§Q¥Î¨ç¼Æ°Æµ{¦¡(EF_points)pºâ¥X³oÓÂIªº¹q³õ¡G ÂI¹q²üqªº®y¼Ð\(\vec{r'}\), ±ýpºâªº¹q³õ¦ì¸m\(\vec{r}\), ¹q³õ(\(\vec{E}\))¦b¸m\(\vec{r}\)ªº¦V¶q¡G \[ \vec{E}(\vec{r})=\frac{kq}{r^3}\vec{r} \] ¦A±N\(\vec{E}\)»P¦ì¸m¦V¶q\(\vec{r}\)¨ú¤º¿n¡A«Ü§Ö¥i¥H§â±¿n¤Àºâ¥X¨Ó¡C¤TºûªÅ¶¡ùØ¡AÁÙ¦³¨ä¥Lªº®y¼Ð¨t¡A¨Ò¦p¶ê¬W®y¼Ð«Y´N¬O¨ä¤¤¤@ºØ·í¡C§Ú̦Ҽ{§Ú̪º¹q²ü§e½u©Ê¤À§G®É¡A¶ê¬W®y¼Ð«Y´N¬O¤@Ó¤ñ¸û¦nªº¿ï¾Ü¡A¦]¬°³oÓ®ÉÔªº°ª´µ±À³¸Ó·|¬O¶ê¬WÅ骺ªí±¤ñ¸û¯à°÷²Å¦X¹q³õ°ÝÃDªº¹ïºÙ©Ê¡Cµ{¦¡¤¤ dA=R*dt*R*sin(T)*df´N¬O²y®y¼Ð¨tªº±¿n·L¶q¤¸¯À¡G\(dA=R^2 \sin(\theta) d \theta d \phi\)¡C |
¦b«e±ªº°Q½×¤¤§Ṳ́w¸g±o¨ì1ÓÂI¹q²ü¦pªG©ñ¦b¥ß¤èÅ骺¥¿¤¤¥¡¡A¹q³õ¹ï6Ó±ªº¹q³q¶qªºÁ`©M·|µ¥©ó¹q²üªº¹q¶q°£¥H\(\varepsilon_0\)¡A³o´N¬O°ª´µ©w«ß¡C¦b¤U±ªºµ{¦¡·í¤¤§Ú̱N¹q²üªº¦ì¸m²¾¶}Åé¤ß¡A¦V¤U¤è°¾²¾¡C§Q¥Îvpythonµ{¦¡§ÚÌ¥i¥Hpºâ¦b³oÓ±¡ªp¤U¡A³q¹L«Ê³¬¦±±ªº¹q³q¶qÁ`©M¡C¼ÆÈpºâªºµ²ªGÅã¥ÜÁ`©M¤£ÅÜ¡A¤´µM¬O°ª´µ©w«ß»¡µ¹¥Xªºµ²ªG\(\Phi_E=\dfrac{Q_{\mathrm{enc}}}{\varepsilon_0}\)¡C§Ú̪¾¹D¦pªG¹q²ü¦V¤U°¾²¾¡A±N·|¦]¬°¹q²ü¸û¬°¾aªñ©³±¡A³q¹L©³±ªº¹q³õ±j«×¼W¥[¡A©³±ªº¹q³q¶q±N·|¼W¥[¡F¬Û¹ïªº³»±ªº¹q³q¶q±N·|´î¤Ö¡A¦b³o¼Wªø»P®øªø¤§¶¡¡A¹q³q¶qªºÁ`©Mºû«ù¤£ÅÜ¡A´N¬O°ª´µ©w«ßªººë¯«¡C |
GlowScript 3.2 VPython def EF_point(q,rq,r): ke=1.; rrq=r-rq E=ke*q*rrq/mag(rrq)**3 return E L=4; NL=10; dx=L/NL; dz=L/NL; da=dx*dz q1=1.; rq1=vec(0,L/4,0.) scene=canvas(width=600, height=500, center=vec(0.5,L/4,0)) X=arrow(pos=vec(0,0,0),axis=vec(6,0,0),shaftwidth=0.02,headwidth=0.04,color=vec(1,0,0)) Y=arrow(pos=vec(0,0,0),axis=vec(0,6,0),shaftwidth=0.02,headwidth=0.04,color=vec(0,1,0)) Z=arrow(pos=vec(0,0,0),axis=vec(0,0,6),shaftwidth=0.02,headwidth=0.04,color=vec(0,0,1)) Q1=sphere(pos=rq1,radius=0.1,color=vec(1,0,0)) Gauss=box(pos=vec(0,L/2,0),size=vec(L,L,L),color=vec(1,1,0),opacity=0.2) dx=L/NL; dz=L/NL; dy=L/NL; da=dx*dz; Tflux=0 eflux=0; n=vec(0,-1,0) for i in range(NL): x=-L/2+dx*(i+0.5) for j in range(NL): z=-L/2+dz*(j+0.5) r=vec(x,0,z) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_1=',eflux,Tflux) eflux=0; n=vec(0,1,0) for i in range(NL): x=-L/2+dx*(i+0.5) for j in range(NL): z=-L/2+dz*(j+0.5) r=vec(x,L,z) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_2=',eflux,Tflux) eflux=0; n=vec(1,0,0) for i in range(NL): y=0+dy*(i+0.5) for j in range(NL): z=-L/2+dz*(j+0.5) r=vec(L/2,y,z) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_3=',eflux,Tflux) eflux=0; n=vec(-1,0,0) for i in range(NL): y=0+dy*(i+0.5) for j in range(NL): z=-L/2+dz*(j+0.5) r=vec(-L/2,y,z) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_4=',eflux,Tflux) eflux=0; n=vec(0,0,1) for i in range(NL): x=-L/2+dx*(i+0.5) for j in range(NL): y=0+dy*(j+0.5) r=vec(x,y,L/2) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_5=',eflux,Tflux) eflux=0; n=vec(0,0,-1) for i in range(NL): x=-L/2+dx*(i+0.5) for j in range(NL): y=0+dy*(j+0.5) r=vec(x,y,-L/2) E=EF_point(q1,rq1,r) Eda=dot(E,n)*da eflux+=Eda Tflux+=eflux print('Flux_6=',eflux,Tflux) print('Tflux=',Tflux,' Gauss-Law:',4*pi*q1)
q1= 1.5 rq1= < 1.3, 0.3, 0.3 > R= 1 N= 8 A= 12.6475 ( 12.5664 ) // FLUX= -0.266703 N= 16 A= 12.5866 ( 12.5664 ) // FLUX= -0.0726721 N= 32 A= 12.5714 ( 12.5664 ) // FLUX= 1.84141e-3 N= 64 A= 12.5676 ( 12.5664 ) // FLUX= 3.84025e-4 N= 128 A= 12.5667 ( 12.5664 ) // FLUX= 9.59969e-5
Y¬OÂI¹q²ü¦b¥ß¤èÅ骺¥~°¼¡A\(Q_{\mathrm{enc}}=0\)¡A®Ú¾Ú°ª´µ©w«ß¡A°ª´µ±ªº¹q³q¶q\(\Phi_E=0\)¡C glowscript:¤@ÓÂI¹q²ü¹ï¥ß¤èÅ鱪º¹q³q¶q¡A¹q²ü¦b¥~(PS-Gauss-01B.py) ÀHµÛ§Ṳ́Á³Îªí±ªº¿n¤À³æ¤¸¶V²Ó½o(N¶V¤j)¡A ¿n¤Àªºµ²ªG´N¶V±µªñ©ó°ª´µ©w«ß¡G\(Q_{\mathrm{enc}}=0\) NL= 4 q1= 4 rq1= < 3.2, 2, 0 > -0.213604 NL= 8 q1= 4 rq1= < 3.2, 2, 0 > -0.0660521 NL= 16 q1= 4 rq1= < 3.2, 2, 0 > -0.0165127 NL= 32 q1= 4 rq1= < 3.2, 2, 0 > -4.12771e-3 |
¦b³oÓpºâ·í¤¤§ÚÌ¿ï¨úªº¦±±¬O¤@Ó¥b®|¬°Rªº²y±¡A®y¼ÐªºìÂI´N³]¦b²y¤ß¤W¡C¦]¬°§Ú̧âìÂI³]¦b²yªº²y¤ß¡A¦]¦¹¨C¤@Ó²y±¤WªºÂIªºªk¦V¶q´N¬O¦ì¸m¦V¶q¡C§ÚÌ¥un§Q¥Î¨ç¼Æ°Æµ{¦¡(EF_points)pºâ¥X³oÓÂIªº¹q³õ¡G ÂI¹q²üqªº®y¼Ð\(\vec{r'}\), ±ýpºâªº¹q³õ¦ì¸m\(\vec{r}\), ¹q³õ(\(\vec{E}\))¦b¸m\(\vec{r}\)ªº¦V¶q¡G \[ \vec{E}(\vec{r})=\frac{kq}{r^3}\vec{r} \] ¦A±N\(\vec{E}\)»P¦ì¸m¦V¶q\(\vec{r}\)¨ú¤º¿n¡A«Ü§Ö¥i¥H§â±¿n¤Àºâ¥X¨Ó¡C¤TºûªÅ¶¡ùØ¡AÁÙ¦³¨ä¥Lªº®y¼Ð¨t¡A¨Ò¦p¶ê¬W®y¼Ð«Y´N¬O¨ä¤¤¤@ºØ·í¡C§Ú̦Ҽ{§Ú̪º¹q²ü§e½u©Ê¤À§G®É¡A¶ê¬W®y¼Ð«Y´N¬O¤@Ó¤ñ¸û¦nªº¿ï¾Ü¡A¦]¬°³oÓ®ÉÔªº°ª´µ±À³¸Ó·|¬O¶ê¬WÅ骺ªí±¤ñ¸û¯à°÷²Å¦X¹q³õ°ÝÃDªº¹ïºÙ©Ê¡Cµ{¦¡¤¤ dA=R*dt*R*sin(T)*df´N¬O²y®y¼Ð¨tªº±¿n·L¶q¤¸¯À¡G\(dA=R^2 \sin(\theta) d \theta d \phi\)¡C |
GlowScript 3.2 VPython scene=canvas(width=800, height=600, center=vector(0.1,0.1,0), forward=vec(-0.3,-0.1,-1)) X=arrow(pos=vec(0,0,0),axis=vec(1.2,0,0),shaftwidth=0.02,headwidth=0.04,color=vec(1,0,0)) Y=arrow(pos=vec(0,0,0),axis=vec(0,1.2,0),shaftwidth=0.02,headwidth=0.04,color=vec(0,1,0)) Z=arrow(pos=vec(0,0,0),axis=vec(0,0,1.2),shaftwidth=0.02,headwidth=0.04,color=vec(0,0,1)) R=1; N=8; dt=pi/N; df=2*pi/N q1=1.5; rq1=vec(0.3,0.3,0.3); ke=1 Q1=sphere(pos=rq1,radius=0.05,color=vec(1,0,0)) arrow(pos=vec(0,0,0),axis=rq1,shaftwidth=0.01,headwidth=0.02,color=vec(1,1,1)) A=0; FLUX=0 for i in range(N): t=dt*(i+0.5) for j in range(N): f=df*(j+0.5) x=R*sin(t)*cos(f); z=R*sin(t)*sin(f); y=R*cos(t) r=vec(x,y,z) n=hat(r) r1=vec(R*sin(t+0.01)*cos(f),R*cos(t+0.01),R*sin(t+0.01)*sin(f)) tv=hat(r1-r) b=box(pos=r,size=vec(R*dt,0.01,R*sin(t)*df),axis=tv,up=r,color=vec(1,0.5,0.5),opacity=0.3) E=ke*q1/mag2(r-rq1)*hat(r-rq1) #arrow(pos=r,axis=b.up*0.2,shaftwidth=0.01,headwidth=0.02,color=vec(0,1,1)) #arrow(pos=r,axis=E*0.2,shaftwidth=0.01,headwidth=0.02,color=vec(0.2,1,0.2)) A+=R**2*sin(t)*dt*df FLUX+=dot(E,n)*R**2*sin(t)*dt*df print('q1=',q1,' rq1=',rq1,' R=',R) print('N=',N,' A=',A,' (',4*pi*R**2,') // FLUX=',FLUX,' (Gauss-Law:',4*pi*q1,')')
ÀHµÛ§Ṳ́Á³Î²y±ªº¿n¤À³æ¤¸¶V²Ó½o(N¶V¤j)¡A¿n¤Àªºµ²ªG´N¶V±µªñ©ó°ª´µ©w«ßªº¼ÆÈ18.8496¡C q1= 1.5 rq1= < 0.3, 0.3, 0.3 > R= 1 N= 8 A= 12.6475 ( 12.5664 ) // FLUX= 18.9097 (Gauss-Law: 18.8496 ) N= 16 A= 12.5866 ( 12.5664 ) // FLUX= 18.8764 (Gauss-Law: 18.8496 ) N= 32 A= 12.5714 ( 12.5664 ) // FLUX= 18.8563 (Gauss-Law: 18.8496 ) N= 64 A= 12.5676 ( 12.5664 ) // FLUX= 18.8512 (Gauss-Law: 18.8496 ) N= 128 A= 12.5667 ( 12.5664 ) // FLUX= 18.85 (Gauss-Law: 18.8496 )
¦pªGÂI¹q²ü¦b°ª´µ²y±¤§¥~¡A¨º»ò±µªñÂI¹q²ü³o¤@±ªºªk½u»P¹q³õªº¤è¦V¤j¬ù¬O¤Ï¤è¦Vªº¡A¦]¦¹³o¤@³¡¤Àªº¹q³q¶q°^Äm¬Otªº¡F¬Û¹ïªº»·Â÷ÂI¹q²üªº¥t¥~ªº²y±ªºªk½u»P¹q³õ¦P¤è¦V¤jP¦P¤è¦V¡A¦]¦¹¹q³q¶qªº°^Äm¬O¥¿ªº¡C®Ú¾Ú°ª´µ©w«ß¡A°ª´µ±ªº¹q³q¶q¬O°ª´µ±¤ºªº²b¹q²ü¡A¦b³oÓ±¡ªp¤U²b¹q²ü¬°¹s¡A¦]¦¹°ª´µ±ªº¹q³q¶qÀ³¸Ó¬O0¡C§ÚÌ¥i¥H°õ¦æ¤W±³oÓµ{¦¡¡A§â¹q²ü©ñ¨ì°ª´µ±ªº¥~±¡Arq1=vec(1.3,0.3,0.3)¡A¨Ã¥BÆ[¹î¤£¦Pªº¤Á³Î¼Æ¥Ø(N)©Ò±oªºµ²ªG¡A¤£Ãøµo²{¹q³q¶q½T¹ê¬°¹s¡A¤]´NÅçÃÒ¤F°ª´µ©w«ßªº¥¿½T©Ê¡C |
q1= 1.5 rq1= < 1.3, 0.3, 0.3 > R= 1 N= 8 A= 12.6475 ( 12.5664 ) // FLUX= -0.266703 N= 16 A= 12.5866 ( 12.5664 ) // FLUX= -0.0726721 N= 32 A= 12.5714 ( 12.5664 ) // FLUX= 1.84141e-3 N= 64 A= 12.5676 ( 12.5664 ) // FLUX= 3.84025e-4 N= 128 A= 12.5667 ( 12.5664 ) // FLUX= 9.59969e-5